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A B S T R A C T

ST segment changes provide a sensitive marker in the diagnosis of myocardial ischemia in Holter

recordings. However, not only do the mechanisms of ischemia result in ST segment deviation, but also

heart rate related episodes, body position changes or conduction changes among others, which are

considered artifactual events when ischemia is the target. In order to distinguish between them, the very

similar signatures of ST modifications has led us to look for other ECG indices such as heart rate-based

indices, correlation between the absolute ST segment deviation and heart rate series, the interval

between the Tapex and the Tend, T wave amplitude, the signal-to-noise ratio and changes in the upward/

downward slopes of the QRS complex. A discrimination analysis between the three types of events:

ischemia, heart rate related episodes and sudden step ST changes (body position changes and conduction

changes) has been performed on the Long-Term ST Database, reaching an accuracy of 82.3%. If we focus

on distinguishing between different ST signatures, transient episodes (ischemic and heart rate related)

and sudden step ST changes, it results in a sensitivity of 76.8% and a specificity of 98.3%. When classifying

ischemia from heart rate related episodes, both with a very similar ST level pattern, a sensitivity of 84.5%

and a specificity of 86.6% are reached. Finally, for separating ischemia from any other ST event, a

sensitivity of 74.2% and a specificity of 93.2% are obtained.

� 2009 Elsevier Ltd. All rights reserved.
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1. Introduction

Myocardial ischemia is the most common cause of death in
industrialized countries and, as a consequence, its early diagnosis
and treatment is of great importance. It can be defined as the
imbalance between oxygen/nutrient delivery with regard to
myocardial requirements. ‘‘Supply ischemia’’ results from a partial
occlusion of a coronary artery, reducing the amount of oxygenated
blood to the myocardium. The term ‘‘demand ischemia’’ refers to a
condition where an increased oxygen demand caused by exercise,
tachycardia or emotion, leads to a transitory imbalance [1,2].

Ischemia is commonly a transient phenomena, which is time
constrained, and could be missed during physical examination and
routine electrocardiography (ECG) because these procedures
permit only a few seconds of observation. To diagnose ischemia,
longer periods of ECG recording are required while the patient is
pursuing his or her normal routine. Holter monitoring gives a
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constant reading of two to three channels of ECG data over a 24-h
period.

The cellular modifications generated by acute ischemia are
responsible for changes in the ST segment, which make ST segment
changes an early marker of ischemia [3]. Electrocardiographic
images of ischemia are different depending on whether the
ischemic area affects mainly the sub-endocardium or the sub-
epicardium. In the case of sub-endocardial ischemia, ST depression
appears at different intensities according to its degree while in the
case of sub-epicardial, also called transmural ischemia, ST
elevation occurs [3].

Several techniques that automate ischemia detection have been
proposed during the last decade and mostly rely on ST changes
[4,5]. However, in addition to ischemic ST episodes (IE), there are
other ST events such as heart rate related episodes (HRE), body
position changes (BPCE) or conduction changes (CCE) which also
result in ST segment modifications being considered artifactual
events when ischemia is the target. This makes ischemia detection
in ambulatory recordings a difficult task.

As mentioned above, ischemia could originate as supply or
demand ischemia. In the database we are using, the Long-Term ST
Database (LTST DB) [6], ischemia is not classified as demand or
supply. An ST event is annotated as IE when it is associated with a
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A. Mincholé et al. / Biomedical Signal Processing and Control 5 (2010) 21–3122
patient with a clinical history showing evidences of cardiac
pathology. On the other hand, if there is an episode associated with
an increase or alteration of heart rate in the ECG and other clinical
investigations do not suggest ischemia, these episodes are
annotated as HRE. Typically, the ST level is measured at the point
Jþ 80 ms, or at the point Jþ 60 ms if the heart rate exceeds
120 bpm [6]. This adaptation of the ST level to heart rate is still a
crude adaptation so it produces ST segment episodes with a similar
signature to ischemic episodes generated by the T wave incursion
into the point where the ST level is measured. These ST events, that
are not associated to ischemia mechanisms, are denoted as HRE.

The dynamics of the different ST events is different in each case.
HRE as well as IE are considered transient ST segment episodes (TE)
and characterized by a length and an extremum deviation. In
contrast, BPCE and CCE, characterized with a sudden shift in the ST
level function, are denoted as sudden step events (SSE) and are
characterized by the time instance they occur.

The novelty of the present work lies in the use of several indices
based on repolarization and depolarization intervals to distinguish
in Holter recordings between different events scenarios called
tasks:

Task 1 Distinguishing between the three independent and differ-
ent origin types of ST events: the target IE, the artifactual
HRE and the also artifactual SSE.

Task 2 Distinguishing between the different ST level signatures:
transient (TE) and sudden step ST change (SSE).

Task 3 Distinguishing between IE and HRE, both with a very similar
ST level pattern, so being the more problematic to
differentiate by automatic ischemia detectors.

Task 4 Distinguishing between IE and non-ischemic events (NIE) in
order to isolate the ischemic problem.

The availability of the annotated LTST DB has provided the
possibility of quantifying the results of classifiers such as those
presented in this work, always under the framework in which the
annotations were developed.

Previous studies have covered some of the proposals outlined in
this article. Task 3, distinguishing between IE and HRE, has not been
the subject of much analysis due to the fact that no other database
provides annotations of HRE. The only study is [7] and this also uses
the LTST DB. In the work in [7], the selected features for
classification were changes of heart rate, changes of time domain
morphologic parameters of the ST segment and changes of the
Legendre orthonormal polynomial coefficients of the ST segment,
all obtained at 20 s intervals at the beginning and at the extrema of
each ST episode, and achieving a sensitivity when classifying
ischemia and heart rate related episodes of 77.9% and a specificity
of 73.9%.

Similarly to Task 4, the 2003 Physionet/Computers in Cardiol-
ogy Challenge [8] consisted of classifying ST changes as ischemic
(IE) or non-ischemic (HRE, BPCE or CCE) using a set of 43 freely
available annotated records of the LTST DB as a training set and the
remaining 43 as a test set. Note that not all annotated ST change
events from the database were used, but only the selected subset.
The top scoring entry of this challenge [9] achieved a performance
in terms of sensitivity/positive predictivity of 98%/83% considering
only the change in ST level relative to the baseline ST level,
provided by the database and manually corrected by experts, and
based on level thresholding within specified time windows.

To separate detection from classification problems, we assume
the episodes are correctly detected so we take the manual
annotations (onset, extremum and offset) provided with the
database as the detection output and just focus on the classifica-
tion problem. Automatic detection rules can be found in works by
Garcı́a et al. [4] and Smrdel and Jager[5].
2. Materials and methods

2.1. The data: Long-Term ST Database

The LTST DB [6] contains 86 24-h duration ambulatory ECG
records of 80 patients sampled at f s ¼ 250 Hz. This database offers a
very accurate representation of ‘‘clinical world’’ data with two- or
three-lead records with a great variety of lead combinations. Each
two-channel record contains one of the following pairs: one of the
bipolar leads recorded at precordial positions, denoted as pseudo
V2–V5, together with modified limb lead III (MLIII); or pseudo-lead
V5 and pseudo-lead V2; or modified limb lead L2 (ML2) and
modified lead V2 (MV2). The leads used in the three-channel records
included: a combination from leads pseudo V3–V6, II and aVF, or
Zymed’s EASI lead system [10] with the leads E-S, A-S and A-I.

Complete expert annotations have been provided for the
database following three different annotation protocols. Electro-
cardiogram waveform is not enough to diagnose myocardial
ischemia, so the gold standard for annotating a transient ST
segment, IE or HRE, was based not only on ECG waveforms but also
on detailed clinical information from the subjects including other
clinical investigations, the clinical history and the opinion of expert
annotators of the database [6]. Thus, a classification of a particular
episode can be driven by a previous knowledge about the patient
rather than physiological evidences. This is one limitation we
should have in mind when analysing the results.

Annotations include IE and other ST segment events such as
HRE, BPCE and CCE, providing an extensive tool to evaluate
classifiers aimed at distinguishing among ST episodes of different
origin.

One transient ST episode (TE) has to be significant to be
annotated according to the following rules: (a) an episode
beginning when the magnitude of the ST deviation first exceeds
50 mV, (b) the deviation must reach a magnitude of Vmin or more
throughout a continuous interval of at least Tmin s and (c) an
episode ending when the deviation becomes smaller than 50 mV,
provided that it does not exceed 50 mV in the following 30 s.

Three different protocols A, B and C are set depending on Vmin

and Tmin:

� Protocol A: Vmin ¼ 75 mV and Tmin ¼ 30 s.
� Protocol B: Vmin ¼ 100 mV and Tmin ¼ 30 s.
� Protocol C: Vmin ¼ 100 mV and Tmin ¼ 60 s.

Hereinafter we will denote the ‘‘ischemia group’’ as IG, the
‘‘heart rate related group’’ as HRG and the ‘‘sudden step group’’,
comprising BPCE and CCE, as SSG. TG will stand for the transient
group composed of IG and HRG, and NIG will stand for the non-
ischemic group that comprises HRE, BPCE and CCE. A comprehen-
sive scheme is shown in Table 1(a).

The classification evaluation of this work has been done for the
three different sets relative to the annotation protocols. The
number of episodes of each type used for the classification analysis
in protocols A, B and C is shown in Table 1(b). The number of
analysed events is slightly lower than in the original database [6]
(in square brackets in Table 1(b)) due to the fact that some episodes
at the beginning of the record have not got any onset annotations
since their onsets start before the beginning of the records and
were excluded from the analysis.

When classifying IG and HRG, we have added T wave related
variables which have caused us to additionally remove manually
those episodes with unreliable annotations in the T wave
delineation process, resulting in the number of episodes for
protocols A, B and C as presented in parentheses in Table 1(b).

Any significant sudden step change of the ST level function
accompanied by a simultaneous sudden step change in QRS



Table 1
(a) Summary of ST events grouping and their acronyms. (b) Number of IE, HRE and SSE used in discrimination for each annotation protocol. These numbers are a bit lower than

in the original database (see text) that are displayed in square brackets. The numbers in parentheses refer to episodes that additionally allow reliable T wave delineation when

these parameters are to be used.

(a) Types of ST episodes

(b) Number of episodes used for classification

Protocol A Protocol B Protocol C

IG [1795] 1788 (1163) [1130] 1126 (623) [857] 855 (505)

HRG [516] 513 (358) [234] 232 (112) [116] 115 (54)

SSG 2388 2388 2388

Total 4689 (1521) 3746 (735) 3358 (559)
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complex morphology was annotated as significant BPCE or
significant CCE, according to its nature (see Fig. 1).

Annotations are attached to the lead or leads where the episode
is significant, so all the study has been done considering the lead to
which the annotated episodes are linked. An example of ST traces
in the four different cases can be found in Fig. 1.

2.2. ECG preprocessing and beat identification

Before deriving index series from the ECG, typical preprocessing
techniques are applied on the raw ECG signal, xlðnÞ, where l is the
Fig. 1. Example of the ST segment deviation caused by the four different annotated

episodes: (a) ischemic, (b) heart rate related, (c) axis shifts and (d) conduction

change events. The circles indicate the annotated onset, extremum and offset in

transient episodes and the occurrence time in the sudden step changes. Time ‘‘0’’ is

referred to the extremum in TE, or occurrence time in SSE.
corresponding lead and n is the sample index. This preprocessing
stage consists of first applying a QRS detector [11] in order to find
QRS fiducial points of each ith beat ðuiÞ and selecting only normal
beats classified according to [11], then baseline wander attenuation
using cubic splines is performed [12] and finally those beats with
differences in mean isoelectric level with respect to adjacent beats
larger than 400 mV are rejected. There are different factors such as
motion artifacts that distort the ECG signal so an extra beat rejection
rule is applied for those whose signal-to-noise ratio (SNR), estimated
as the peak-to-peak QRS amplitude over the RMS value of the high-
frequency noise (above 25 Hz), differs more than 20 dB from the
running exponentially averaged SNR series. The forgetting factor of
the exponential averaging is set to 0.02 as in [13].

2.3. Indices for the discriminant analysis

In this work, different ECG features (I) and their transient
variations (DI), measured from repolarization, depolarization and
heart rate indices have been used in the discriminant analysis.

In order to distinguish between both transient episodes, IG and
HRG, these features have been computed over three different
intervals (I1, I2 and I3) of 20 s duration each (the duration was
selected empirically), located as described in Fig. 2(a). I1 is defined
as 20 s interval ending at the sample where the episode begins, I2

as 20 s interval starting at the sample of the episode onset and I3 as
20 s interval centered at the extremum episode sample. The
changes of the mean feature value in interval Ik with respect to I j

(DI jk) have been computed and proposed as indices for the
classification analysis (see Eq. (1)):

DI jk ¼
P

i2 Ik
IðiÞ

NIk

�
P

i2 I j
IðiÞ

NI j

j; k ¼ 1;2;3 and j 6¼ k (1)

where i is an integer denoting the ith beat order in interval I and NIk

and NI j
are the number of beats contained in interval Ik and I j

respectively.
Alternatively, when discriminating between the three types of

events including IG, HRG and SSG, only two intervals are considered
since SSG is characterized by a unique mark. For SSG two intervals
of 20 s each is defined; I1, just before the event and I2, just after,
which is going to be paired to the I3 interval of the TG group (IG plus



Fig. 2. (a) For discriminating between transient events, the three different intervals

I1, I2 and I3 used to compute DI12, DI13 and DI23 are shown. (b) For sudden step

events, only two intervals I1 and I2, are defined.
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HRG) when the two ST signatures are to be discriminated (see
Fig. 2(b)).

All the indices are computed over the ECG after the preproces-
sing stage. Some of them are shown in Fig. 3(a).

2.3.1. Repolarization indices

� As has been previously described, the ST level is a common
marker of ischemia and has therefore been included in the
Fig. 3. (a) The different intervals used for obtaining the series of T width (Tw), Tapex

to Tend interval (T pe), QT interval (QT) and the RR interval measured to compute the

heart rate series (HR) are shown. The ST level series is calculated by averaging the

first 8 ms of the ST segment. (b) In the upper figure, the QRS complex of the raw ECG

signal and, in the lower figure, its second scale wavelet transform are shown. The

maximum and minimum of the wavelet transform correspond to the two steepest

slopes. Note that zero crossing of the wavelet transform corresponds with the peak

of the QRS complex.
classification analysis. The underlying mechanism responsible
of the shift in the ST level is that ischemic tissue produces an
injury current [3]. It has been found that the angular difference
in the non-ischemic and ischemic case is very consistent over
the entire ST and T wave segment, and in some cases the
terminal portion of the QRS complex. The ST level series is
estimated at each ith beat and lead by averaging 8 ms (to
make the measurement more stable) of the preprocessed ECG
signal starting from a heart rate related sample reference
(ni

ST0
) [14]:

ni
ST0
¼ ui þ

40

1000
f s þ 1:3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rri

1000
f s

r
(2)

where ui represents the sample of the QRS fiducial point defined

as the center of gravity of the QRS complex and rri ¼ ui � ui�1

the RR interval at the ith beat in sample units.

Changes in the deviation of the ST level are denoted as DIST12
,

DIST13
and DIST23

. The absolute values of these changes in the ST
level series are also considered for the classification analysis and
denoted as jDIST12

j, jDIST13
j and jDIST23

j.
� The root mean square (RMS) of the difference of the ST segment

with respect to the ST of a reference beat (IRMS) is analysed. The
hypothesis here is that differences in the area under the ST
segment is a more robust measurement than the ST level itself,
since it includes information about changes in energy of this
segment [4].

In order to avoid the influence of high-frequency noise in the
calculation of the RMS difference series, the preprocessed ECG
signal is further low-pass filtered using a linear phase FIR filter
with a cutoff frequency of 25 Hz at the ST segment.

The ST segmentation is performed by selecting a fixed length
window of 50 ms from the heart rate related sample reference ni

ST0
.

The segmented ST window signal xi
ST;lðnÞ is defined as:

xi
ST;lðnÞ ¼ xlðni

ST0
þ nÞ n ¼ 0; . . . ;N � 1 (3)

where N ¼ ð50=1000Þ f s and l is the corresponding lead.
In order to calculate the IRMS difference series, a reference beat,

x̄ST;lðnÞ, has to be defined. We create an ST series defined as the first
sample of the ST segment of each beat, xi

ST;lð1Þ with i ¼ 1; . . . ;M

where M is the number of beats in the record. In this series, an
interval of 30 min called the ‘‘basal interval’’ is searched with two
restrictions: having the shortest peak-to-peak amplitude in the
series and the whole interval series being below 4/3 of the xi

ST;lð1Þ
absolute median value of the recording. Within this ‘‘basal interval’’
100 beats are averaged to calculate the reference beat in each lead
x̄ST;lðnÞ.

Finally, a first RMS difference series, ylðuiÞ is calculated using
the following equation:

ylðuiÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN�1

n¼0

ðxi
ST;lðnÞ � x̄ST;lðnÞÞ

2

vuut (4)

where l is the corresponding lead.
As an outlier rejection, a median filter of 5 beats length is

subsequently used on the ylðuiÞ series. This series is evenly
resampled to 1 Hz and an exponential running average (with a
forgetting factor set to 0.05) is applied to smooth the series
resulting in a RMS-series suitable for analysis and denoted
hereinafter by IRMS.

� The Karhunen–Loéve transform (KLT signature) of the ST–T
and QRS complexes are also analysed. Body position changes
are often manifested as shifts in the electrical axis and may
be misclassified as ischemic changes during ambulatory
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monitoring. These shifts in the electrical axis and therefore in
the ECG, are manifested as abrupt changes on the QRS and STT
complexes, property which can be used to discriminate
ischemia from other events.

Previous studies have used the Karhunen–Loéve transform
(KLT) to detect non-ischemic episodes such as body position
changes or conduction changes [15]. During these non-ischemic
events the QRS signatures also change rapidly (generally over a
period of half a minute) generating step function features in KLT
coefficient series which are useful for discriminating ‘‘from just’’
episodes restricted to repolarization changes. Besides, the KLT of
the QRS and ST segment has already been used in differentiating
between true ischemic ST segment changes and non-ischemic ST
deviations caused by axis shifts [16]. The distance functions used
for each complex (QRS and ST–T) at time (ui) are simply the
distance series between each normalized KLT coefficients vector
(in which only the first four components are considered) and a
mean reference value (r):

I e
KL;lðuiÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX4

j¼1

ðal
jðuiÞ � al

jðrÞÞ
2

vuut (5)

with al
jðuiÞ being the jth order KLT coefficient at beat i estimated

for the l th lead. The al
jðuiÞ coefficient series is estimated using

adaptive filtering to remove noise uncorrelated to the signal, thus
improving the KLT estimation [17]. A compromise between noise
reduction and convergence time is reached using a step-size
parameter for the LMS algorithm of m ¼ 0:10, that yields a SNR
improvement in the series of 10 dB, with a convergence time of one
beat [17]. An extra reduction of noise was achieved by applying a
median filtering and a smoothing to the KLT trends resulting in the
KLT series denoted as: I e

KLQRS
and I e

KLST�T
. As an alternative, we used

the first order Mahalanobis distance functions in order to calculate
the KLT series as follows:

Im
KL;lðuiÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX4

j¼1

al
jðuiÞ

sðal
jðuiÞÞ

 !vuut (6)

where sðal
jðuiÞÞ is the standard deviation of the KLT coefficient

series over the beat series.
We applied the same postprocessing procedure as previously

explained and obtained the KLT coefficient feature vectors denoted
as Im

KLQRS
and Im

KLST�T
.

� The width of the T wave (Tw) was measured as a potential feature
related to repolarization dispersion and eventually related also
to ischemia [18], in each lead of the ECG. Delineation was done
using a wavelet-based ECG delineator [19]. Changes of the T
wave width across the three intervals are denoted as DITw .
� Alternatively, changes in the interval from the peak (Tapex) to the

end (Tend) of the T wave (T pe) are measured in each lead. T pe has
been proposed as a marker related to transmural dispersion [20]
and also as a more robust measurement than T width since it
avoids uncertainties in the detection of T onset when ST
elevation occurs. These changes measured in each ST episode
are denoted as DIT pe .
� The amplitude of the T wave has been taken into account as T

wave morphology has been shown as a useful marker of acute
transmural ischemic change. It is also a measure of the
repolarization dispersion generated by ischemia [21]. Changes
in the T wave amplitude (DITA), measured referring to the
voltage level at the Tend fiducial point, have been computed using
the delineation marks defined previously.
� QT interval provides information of repolarization dispersion

and also is strongly and inversely related to heart rate. The
adaptation of the QT interval to the HR has led us to include these
changes of QT as a variable for the discrimination between
events. Differences in the QT interval have also been measured
(DIQT).
� The correlation between the heart rate series (IHR) and the IRMS

of the ST level calculated previously within an interval (Ir) of 60 s
centered at the onset of the annotated ST episode has also been
evaluated as a potential discriminator of HRG episodes and
referred to as r. This has been calculated after resampling the
series to an even sampling frequency of 1 Hz in the following
way:

r ¼
X
k2 Ir

ðIRMSðkÞ �mRMSÞðIHRðkÞ �mHRÞ
NsRMSsHR

(7)

where mRMS and mHR are the mean, and sRMS and sHR are the

standard deviation of the IRMS and IHR series respectively in Ir,

and N the number of samples at the Ir interval.

2.3.2. Depolarization indices

Alterations in the late steepest slope of the QRS complex has
been proposed as an index to quantify ECG changes in supply
ischemia [22]. The conduction velocity reduction generated by
ischemia has a strong effect on the downward stroke of the QRS
complex, which reduces its amplitude and its slope considerably.
Therefore changes in the steepest slopes of the QRS complex
referred to as the early (Se) and late (Sl) slopes are considered in the
classification analysis. Se and Sl can be sequenced either upward/
downward or downward/upward depending on the QRS morphol-
ogy. The QRS slope series are computed from the processing during
the QRS delineation [19], using the second scale wavelet transform
maximum (minimum) that corresponds to the maximum (mini-
mum) derivative of the QRS complex (see Fig. 3(b)). At the latter
stage, the slope series is recomputed by normalizing the QRS
amplitude to give the unit mean value at the I1 interval, so the unit
dimension of the slope will be Hz instead of mV/s. Changes in the
absolute values of these series (early and late QRS slopes) across
the three intervals are taken into account and denoted as DISe and
DISl.

2.3.3. Heart rate indices

Changes in the heart rate corresponding to the three intervals
are also measured (DIHR). The absolute value of these changes are
also analysed and referred to as jDIHRj. The mean heart rate values
at intervals I1 and I3 were computed and denoted as IHR1

and IHR3

respectively.

2.3.4. Signal-to-noise ratio (SNR) index

With the aim of accounting for the higher noise in SSG or HRG in
comparison with IG, the SNR index (ISNR) has been considered as
introduced in Section 2.2.

2.4. Performance evaluation: statistical analysis

First monovariate ANOVA discriminant analysis is performed
for each variable so as to establish the individual significance for
classification performance. Multivariate discriminant analysis
has been used to pick out the ECG indices that best classify
different types of episodes. The stepwise approach is then
applied, using the Wilk’s Lambda minimization as the criteria for
inclusion and removal of variables (F ¼ 3:84 for inclusion and
F ¼ 2:71 for rejection) [23]. The classification results are
calculated using the cross-validated estimation (leave-one-
out). A rule of thumb says that the number of variables used
should be lower than the square root of the number of cases of
the smallest group of the data set.



Table 2
(a) Summary of the means and standard deviations (mean� std) of different indices variations used in classification analysis at the annotated ischemic (IG), heart rate related

(HRG) and sudden step ST change (SSG) groups applying protocol B, between intervals I1 and I3 (in SSG, I3 is replaced by I2). The p-value of each feature is also shown. (b)

Summary of the classification performance in terms of the confusion matrix for the annotation protocols A, B and C. The selected set of variables for the prediction are

displayed beneath the confusion matrix.

(a) Statistical description of each index

Variables IG HRG SSG p-Value

DIRMSST
[mV] 38:7� 33:7 24:9� 21:3 �0:2� 20:1 0

DIST [mV] �65:0� 181:5 �58:8� 107:9 �0:4� 73:9 5:1 E�53

jDISTj [mV] 152:3� 119:0 106:9� 60:2 47:7� 56:4 9:8 E�247

DIHR [bpm] 7:2� 15:5 18:9� 18:2 1:8� 8:6 2:4 E�107

jDIHR j [bpm] 12:1� 12:0 22:1� 14:1 6:5� 5:9 1:4 E�164

IHR3
[bpm] 90:5� 24:1 110:2� 21:3 82:6� 17:5 1:4 E�95

IHR1
[bpm] 83:3� 17:9 91:3� 15:6 80:8� 18:0 8:1 E�18

jDIe
KLST�T

j 0:5� 0:6 0:3� 0:3 0:1� 0:1 9:7 E�227

jDIm
KLST�T

j 1:4� 1:4 1:0� 0:9 0:2� 0:2 3:7 E�281

jDIe
KLQRS

j 0:1� 0:2 0:1� 0:1 0:1� 0:1 2:7 E�15

jDIm
KLQRS

j 0:5� 0:5 0:6� 0:6 0:3� 0:2 5:9 E�85

DISNR �7:0� 69:3 �36:3� 79:7 �15:0� 31:6 8:2 E�16

Ir 0:2� 0:5 0:4� 0:5 �0:08� 0:5 7:9 E�69

DISe [Hz] 0:11� 6:8 0:71� 5:11 �0:2� 7:1 0.09

DISl [Hz] 1:29� 8:0 1:9� 6:3 �8E�5� 7:5 2:0 E�7

(b) Confusion matrix

Type Prediction

Protocol A (EX ¼ 72:0%) Protocol B (EX ¼ 82:3%) Protocol C (EX ¼ 85:4%)

IG HRG SSG IG HRG SSG IG HRG SSG

Percentage of events (%) IG 50.8 25.6 23.6 59.7 21.3 19.0 62.8 18.5 18.7

HRG 12.3 67.4 20.3 15.9 66.4 17.7 14.8 64.3 20.9

SSG 4.2 7.1 88.7 2.0 3.5 94.6 3.5 1.9 94.6

Included variables {V} DIRMSST
, IHR3

, DIRMSST
, jDIHR j, DIRMSST

, jDIe
KLST�T

j,

jDI e
KLST�T

j, jDIHR j, jDIe
KLST�T

j, Ir , jDIHR j, jDIm
KLQRS

j,

Ir , jDIm
KLST�T

j, jDIm
KLST�T

j, IHR3
, IHR3

, DISNR,

DISNR, DIST, DISNR, DIST, Ir and DIST

jDIm
KLQRS

j, jDIe
KLQRS

j, ISe and ISl

jISTj and jDIRMSST
j

Fig. 4. Group dispersion diagrams for the discriminant functions F1ðVÞ and F2ðVÞ,
obtained using the set of indices giving the best performance for protocol B. The

standard deviation and the mean value of each group distribution are also shown.
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Five variables were calculated to assess the classification
performance: sensitivity (SE), specificity (SP), positive predictivity
value (+PV), negative predictivity value (�PV) and exactness (EX).
SE, +PV, SP and �PV when clustering a group ‘‘1’’ from another
group ‘‘2’’, are defined as follows:

SE ¼ TP

TP þ FN
þPV ¼ TP=N1

TP=N1 þ FP=N2

SP ¼ TN

TN þ FP
�PV ¼ TN=N2

TN=N2 þ FN=N1

while EX, also called accuracy, is defined as:

EX ¼ TP þ TN

N1 þ N2

where TP represents the true positives, FN the false negatives, FP the
false positives, TN the true negatives and N1 and N2 are the number
of elements belonging to the group ‘‘1’’ and ‘‘2’’ respectively. The
normalization factors (N1 and N2) when estimating theþPV are due
to the imbalance of the number of elements in each group involved
in the discriminant analysis (see Table 1(b)).

3. Results

3.1. Classification between IG, HRG and SSG

For the ANOVA classification, variables related to the T wave
delineation such as DIQT, DITA, DITw and DIT pe , have not been
included because body position changes linked to high noisy beats
make T wave delineation problematic. In Table 2(a), means and
standard deviations of each index for each type of episode are
shown for protocol B.

Multivariate discriminant analysis results for classifying the
three groups (IG, HRG and SSG) are presented in terms of the
confusion matrix in Table 2(b) for the three protocols A, B and C.
The selected set of variables {V} ordered by significance of the



Table 3
Summary of the classification performance in terms of sensitivity (SE), specificity (SP) and exactness (EX) between transient events TG (ischemic plus heart rate related

episodes) and sudden ST shifts (SSG) for the annotation protocols A, B and C. The variables included for the classification for each protocol are also shown.

Events Protocol A (EX ¼ 82:7%) Protocol B (EX ¼ 90:5%) Protocol C (EX ¼ 93:0%)

SE (%) SP (%) SE (%) SP (%) SE (%) SP (%)

TG vs. SSG 71.6 93.3 76.8 98.3 78.3 99.0

Included variables {V} DIRMSST
, jDIe

KLST�T
j, DIRMSST

, jDIe
KLST�T

j, DIRMSST
, jDIe

KLST�T
j,

jDIHR j, Ir , jDIHR j, Ir , jDIHR j, Ir ,

jDIm
KLST�T

j, IHR3
, jDIm

KLST�T
j, IHR3

, jDIm
KLST�T

j, IHR3
,

DISNR, DISl and DISe DISNR, DISl and DISe DISNR, DISl and DISe
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classification for each annotation protocol is also included below
the confusion matrix.

The group dispersion diagram obtained with the two dis-
criminant functions, F1ðVÞ and F 2ðVÞ, for protocol B, is shown in
Fig. 4.
Fig. 5. (a) Discriminant punctuation for classifying between the transient group (TG)

and the sudden step group (SSG) for the three protocols. (b) Discriminant

punctuation for classifying between the ischemic (IG) and the heart rate related

(HRG) group for the three protocols.
3.2. Classification between different ST level patterns: TG and SSG

As regards distinguishing between different ST signatures, the
TG and the SSG, results are shown in Table 3 in terms of SE, SP and
EX. The most significant variables selected by the classification
analysis for each protocol are also shown.

In order to represent the discriminant punctuation classifying
the TG and SSG for the three protocols, box plots have been used
(see Fig. 5(a)). Each box plot represents the 25–75th percentile and
the line within the box denotes the mean.

3.3. Discrimination between the ischemic group (IG) and the heart

rate related group (HRG)

For classifying IG and HRG events, we have first used all the
variables except the T wave related indices, reaching an accuracy of
77.2% for protocol B. The selected set of variables for protocol B
used in the classification analysis is: IHR3

, jDI e
KLST�T

j, DIST, jDIHRj,
DIRMS, Ir, jDIm

KLQRS
j, jDI e

KLQRS
j and DISNR.

In order to improve the discrimination performance, we have
added the T wave related variables and included changes between
the three different intervals I1, I2 and I3.

The mean and the standard deviation of several variables
evaluated in the discriminant analysis for the two different groups
(IG and HRG) are presented in Table 4(a). The performance analysis
and the p-value of the discrimination between the groups have also
been evaluated for each variable individually.

Table 4(b) shows the classification performance for protocol B, in
terms of SE, SP, +PV and �PV, obtained when adding new T wave
related variables in the stepwise approach and also a summary of the
performance and the selected set of variables for protocols A and C.

The discriminant punctuation between IG and HRG calculated
analogously to the the discrimination between TG and SSG is
shown in Fig. 5(b).

3.4. Classification between IG and NIG

The performance analysis when distinguishing between IG and
NIG (HRE, BPCE and CCE) reaches an exactness of 87.5% for protocol
B. A summary of the classification performance is shown in
Table 5.

Classification of episodes on each recording (patient) has been
calculated using leave-one-out over recordings. The percentages of
patients whose sensitivity, specificity and exactness are within the
ranges: less than 50%, from 50% to 60%, from 60% to 70% and so on
until more than 90% are shown in Fig. 6.

4. Discussion

4.1. Classification between IG, HRG and SSG

In the first part of this work we have approached the task of
classifying the three different types of ST events, IE, HRE and SSE,



Table 4
(a) Summary of the mean and the standard deviation (mean � std) of different indices variations used for the classification analysis of the annotated ischemic (IG) and heart

rate related episodes (HRG). The p-value of those indices is also shown. (b) shows the improvement in classification performance between IG and HRG episodes in terms of SE,

SP, +PV,�PV and EX, in each step of the method for protocol B. A summary of the performance together with the selected set of variables for protocols A and C is also shown.

(a) Statistical description of each index

Variables IG HRG p-Value

DIRMSST13
[mV] 37:4� 24:8 22:8� 16:2 4 E�09

DIST13
[mV] �69:87� 148:2 �26:54� 107:6 0.003

jDIST13
j [mV] 140:28� 84:53 98:8� 49:5 6 E�07

jDIHR12
j [bpm] 3:8� 4 8:4� 7:1 2 E�21

jDIHR13
j [bpm] 10:07� 9:4 19:16� 11:14 6 E�19

IHR3
[bpm] 85:6� 19:9 103:6� 20:7 2 E�17

DIQT13
[ms] �5:2� 28:2 �30:6� 34 1:2 E�16

DIQT23
[ms] �3:8� 24:9 2:5� 30 8 E�16

DITw13
[ms] �18:1� 27:1 �32:9� 40:3 1 E�06

DIT pe13
[ms] �5:8� 14:2 �12:9� 22:2 1 E�05

jDIe
KLQRS12

j 0:03� 0:03 0:02� 0:02 0.008

jDIe
KLST�T13

j 0:03� 0:03 0:02� 0:02 6 E�08

jDIm
KLST�T12

j 0:04� 0:3 �0:06� 0:3 0.046

DISl23
[Hz] 0:35� 5:87 1:75� 5:19 0.02

DISe23
[Hz] �0:41� 5:06 0:87� 4:12 0.01

Ir �0:16� 0:5 0:36� 0:5 1 E�04

DISNR13
�4:2� 70:4 �39:7� 84:4 2:3 E�06

DITA13
[mV] �37:2� 271:2 �116:8� 201:9 0.003

(b) Step-wise classification

Variables (ordered by classification relevance) SE SP +PV �PV EX

P jDIHR12
j 78.7 54.5 63.4 71.9 75.0

R jDIHR12
j, DIQT23

80.5 67.0 70.9 77.4 78.4

O jDIHR12
j, DIQT23

, jDIST13
j 81.0 68.8 72.2 78.3 79.1

T jDIHR12
j, DIQT23

, jDIST13
j, DIST13

80.3 79.5 79.6 80.2 80.2

O jDIHR12
j, DIQT23

, jDIST13
j, DIST13

, IHR3
83.5 76.8 78.2 82.3 82.5

C jDIHR12
j, DIQT23

, jDIST13
j, DIST13

, IHR3
, jDI e

KLST�T13
j 82.7 82.1 82.2 82.6 82.6

O jDIHR12
j, DIQT23

, jDIST13
j, DIST13

, IHR3
, jDI e

KLST�T13
j, jDIHR13

j 83.8 81.3 81.7 83.4 83.4

L jDIHR12
j, DIQT23

, jDIST13
j, DIST13

, IHR3
, jDI e

KLST�T13
j, jDIHR13

j, jDIe
KLQRS12

j 84.0 85.7 85.5 84.3 84.3

B jDIHR12
j, DIQT23

, jDIST13
j, DIST13

, IHR3
, jDI e

KLST�T13
j, jDIHR13

j, jDIe
KLQRS12

j and DIm
KLQRS23

84.5 86.6 86.3 84.8 84.8

A IHR3
, DIST13

, jDIe
KLST�T13

j, jDIHR13
j, DIRMSST23

, DIT pe12
, jDIe

KLQRS12
j, jDIm

KLQRS13
j, DISNR12

, jDIHR12
j, jDIe

KLST�T12
j and jDIm

KLST�T12
j 76.0 76.5 76.4 76.1 76.1

C jDIHR12
j, DIHR13

, DIST13
, DIRMSST23

, DISl23
, IHR3

and DISNR12
86.5 81.5 82.4 85.8 86.0

Table 5
Summary of the classification performance in terms of sensitivity (SE) and specificity (SP) between the ischemic group IG and the non-ischemic group NIG for the annotation

protocols A, B and C. The variables included for the classification for each protocol are also shown.

Events Protocol A (EX ¼ 79:0%) Protocol B (EX ¼ 87:5%) Protocol C (EX ¼ 91:0%)

SE(%) SP(%) SE(%) SP(%) SE(%) SP(%)

IG vs. NIG 65.0 87.7 74.2 93.2 77.7 95.6

Included variables {V} DIRMSST
, jDIe

KLST�T
j, DIRMSST

, jDIe
KLST�T

j, DIRMSST
, jDIe

KLST�T
j,

DISNR, Ir , jDIm
KLST�T

j, DISNR, jDIm
KLST�T

j, DISNR,

DIST, jDIm
KLST�T

j, Ir, DISl, Ir , DISl

DISe and DISl DISe and jDIHR j DISe and jDIHR j

A. Mincholé et al. / Biomedical Signal Processing and Control 5 (2010) 21–3128
obtaining an accuracy of 82.3% and using a set of 11 indices for
protocol B (see Table 2(b)). The ordered index set proposed as
significant by the step wise approach is shown for each protocol.
Note that the two most significant indices are DIRMSST

followed by
jDIHRj. The first shows a first attempt to classify the two different
patterns of the ST level, the transient TG and the sudden step group
SSG, while the second shows greater differences within the TG,
between IE and HRE.

If we analyse each index individually (see Table 2(a)), DIRMSST

associated to changes in energy of the ST segment, is higher in the
IG (38.7 mV) than in the HRG (24.9 mV) and hardly changes in the
SSG (�0:2 mV). These results agree with indices DIST and jDISTj,
which show greater values in the TG (more in the IG than in the
HRG) than in the SSG group, where the ST level change is abrupt and
with low amplitude.

Heart rate related indices show higher increments during HRE

(jDIHRj ’22:1 bpm) in comparison with IE (’12:1 bpm) and SSE

(’6:5 bpm). The heart rate value at the extremum is also higher in
mean during HRE (’110:2 bpm) than during IE (’90:5 bpm) and
much more than in SSE (’82:6 bpm).

The KL-based indices, associated to changes in the QRS and ST–T
complexes and mostly used to detect body position changes in the
ECG [15], show higher differences between the TG and the SSG than
within the TG (IG and HRG).



Fig. 6. Percentage of recordings whose sensitivity, specificity and exactness when

detecting ischemia are within different ranges.
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The early and the late QRS slopes show differences between
the transient (DISl’1:56 Hz) and the sudden step group
(DISl’0:06 Hz).

Index Ir, associated to the correlation between the heart rate
and the RMS of the ST segment is higher in mean in HRG events
(’0:4) than in IG events (’0:2), showing that an increase of heart
rate in IE could be secondary to the oxygen demand-supply
imbalance while in HRE, the ST segment change is directly the
result of T wave incursion into the ST segment because of the high
heart rate. SSG events hardly show correlation in mean (’ � 0:08).

In terms of protocols, protocol C, with the least number of
transient events and the most restrictive, achieves the highest
accuracy when classifying, followed by protocols B and A, the least
restrictive. This is in accordance with the fact that protocol C
retains only the very evident episodes.

4.2. Classification between different ST level patterns: TG and SSG

The very different origins and patterns of the ST level in the
TG and the SSG result in the accuracy of distinguishing between
these two groups increasing up to 90.5% for protocol B (see
Table 3). The sensitivity when classifying the TG is 77% and 98%
for the SSG.

Most variables included in the classification analysis rely on
changes in the ST segment, DIRMSST

, associated to changes in the
area defined by the ST segment, being the most significant index,
followed by jDI e

KLST�T
j. This agrees with the fact that they have

different ST level patterns.
KL-based indices of the ST–T and QRS are suggested in the

literature as markers for the detection of body position changes
[15] that are associated to sudden step ST changes, agreeing with
our results that propose jDI e

KLST�T
j as a significant parameter in the

discrimination. This index accounts for the complete repolariza-
tion feature, adding which could be missed by just looking at the ST
segment exclusively.

ST level is also a crucial parameter for classification. Calculation
of the deviation of the ST in mean for TG (’130 mV) is higher than
in the SSG (’48 mV).

Information about heart rate is also included in the discrimi-
nant function. jDIHRj shows greater changes in mean of heart rate
during TG (’12 bpm) in comparison to SSG (’2 bpm).

4.3. Discrimination between the ischemic group (IG) and the heart

rate related group (HRG)

A first attempt in distinguishing between IE and HRE without
using T wave related indices achieved an accuracy of 77.2% for
protocol B. However, the accuracy increases up to 84.8% when we
add those indices related to the repolarization dispersion as
described in Section 2.3.1 (see Table 4(b)).
Note that the variables with lower p-values are those related to
heart rate and QT interval and thus the first ones included in the
step wise approach are jDIHR12

j and DIQT23
(see Table 4).

HRE are mostly associated to more remarkable changes in heart
rate than IE and in order to group these episodes the first variable
included in the classification analysis is jDIHR12

j (’3:8 bpm in
mean for IG and ’8:4 bpm for HRG). However, heart rate
acceleration is also a key factor to induce ischemia in patients
with coronary occlusion and therefore other indices in addition to
the heart rate change related to changes in the ST segment are
needed to avoid overlapping with the HRG. Regarding the IG, in [24]
it is claimed that much larger number of the records of the LTST DB
contain demand ischemic episodes, related to heart rate. However,
episodes in the database are not clinically classified as demand or
supply episodes. Besides, care should be taken in the sense that not
all episodes in HRG are associated with an increase in heart rate. In
about 10% of the episodes, heart rate is oscillating or even
decreasing.

QT interval changes are typically adapted to changes in the RR
interval, therefore the QT interval is hardly shortened in IE

(’4 ms) while in HRE it is reduced by about 28 ms.
Alterations in the late steepest slope has been proposed as an

index to quantify ECG changes in supply ischemia, with the result
that QRS slopes were considerably less steep during prolonged
(’4 min) artery occlusion [22]. However, in short term (’1 min)
angioplasty episodes, discrepant slope variations were found [25].
Our results show no systematic changes and agrees mostly with
[25].

A greater shortening in the T width, in mean, is observed in HRE

(’ � 32 ms) while in IE it is lower (’ � 18 ms). A similar
behaviour is observed in DIT pe where the shortening is greater
in HRE. Both indices are closely related to heart rate with the
difference that Tw interval adapts slower to heart rate changes than
T pe interval [26].

In general, transmural or epicardial ischemia is reflected in ST
elevation while sub-endocardial ischemia shows ST depression [3].
Our results (Table 4(a)) show depression in the ST level function
during IE ( 8 � 70 mV in mean) and agrees with [3] due to the fact
that most of ischemic events in Holter recordings are sub-
endocardial. The absolute deviation of the ST level is higher in IE

( 8 144 mV in mean) than in HRE ( 8 93 mV) as expected.
The amplitude of the T wave is reduced during both types of

episodes, being lower during HRE in comparison to IE. The
depression of the T wave agrees with [27], which states that
epicardial ischemia increases the peak T amplitude while
endocardial ischemia produces a size-dependent reduction in T
amplitude. As we commented above most of the IE in Holter
recordings are sub-endocardial.

Finally, note that in [7] it is also presented a discrimination
between IG and HRG, reaching a sensitivity of 77.9% and a
specificity of 73.9%. Without including T wave related variables, we
obtained similar results. In this work, we added T wave related
indices and achieved an increase up to 84.5% in sensitivity and up
86.6% in the specificity.

4.4. Classification between IG and NIG

When the classification target is ischemia, we observe that the
two first variables that best distinguish between IG and NIG are
those related to the ST segment: DIRMSST

and jI e
KLST�T

j. Note that
these indices are also the most significant when distinguishing
between different ST segment patterns (TG and SSG). The reason is
that the IG has a much higher change in the RMS of the ST segment
and also in the ST–T complex than TG and SSG (see Table 2(a)).

In relation with the Physionet/Computers in Cardiology
Challenge, our results are comparable with [9] (EX ¼ 90:7% in
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[9] and EX ¼ 87:5% with our method), being the ST level change a
very substantial parameter for distinguishing between IG and NIG.
However, [9] uses indices such as changes in the ST level manually
corrected by experts while our method is fully automated.

Performance on recordings rather than on episodes, is shown in
Fig. 6. About 30% of the patients have a sensitivity of more than 90%
when the target is classifying IE, more than 50% have a specificity of
90% and 40% have an exactness of more than 90%. This means that
most of the patients have more than 90% of the NIE correctly
classified. On the other way round, less than 10% of the patients
have a sensitivity, specificity and exactness less than 50% when
classifying IE. We can conclude that this method minimizes the
false positive classification and less than 10% of the patients have
less of the 50% of IE correctly classified.

4.5. General remarks

An important limitation of this study is that although the expert
annotations are used as gold standard, classification of a particular
episode can be driven by a previous knowledge about the patient
rather than physiological evidences. Also, the usage of different
lead configurations in this database adds difficulties when
classifying.

In addition to use the magnitude of the feature change to
account for the dynamic effects of ST episodes, we have also
considered to use the percentage change. However, this strategy
was not as significant as the one related to the magnitude of the
change when inserted in the discriminant analysis.

Due to the fact that some indices have leptokurtic distributions,
a logarithmic transformation has also been tested. However, it has
been discarded as no improvement was reached. This is in
concordance with some studies that show that linear discriminant
analysis is relatively robust even when there are modest violations
of the assumptions of homogeneity of variances and normal
distributions of indices [23].

In linear discriminant analysis, the covariance matrix of each of
the classes is assumed to be identical. Quadratic discriminant
analysis is a more general classifier where each class has a different
covariance matrix. The usage of quadratic discriminant analysis
has not improved the performance (about �0:5% in exactness).
Besides, the obtained performance in test set is similar to the one
obtained in the training set. These results suggest that no
improvement could be reached in linear classification and non-
linear statistical techniques such as artificial neural networks and
support vector machines could be explored as alternative
classifiers. Non-linear indices to differentiate normal states from
ischemic ones such as shifts in the Shannon’s entropy could also be
studied [28].

5. Conclusions

In this work we have used various indices to distinguish
between different ST level change events, our target being to
distinguish ischemia from artifactual events such as heart rate
related episodes and sudden step changes annotated by experts in
the LTST DB.

When discriminating between the three types of events (Task
1), the very pronounced differences between the transient
episodes (IE and HRE) and the sudden step ST events, together
with the differences in the number of episodes between groups,
cause the step wise classification approach to focus first on
classifying sudden step ST changes. The most significant variable of
the discrimination function is related with changes in energy of the
ST segment, showing a first classification between transient and
sudden step changes. The second input variable is related to heart
rate and attempts to discriminate between IG and HRG.
The results notably improve when trying to distinguish
between the two very different ST level patterns: transient and
sudden step (Task 2). As expected, the first included indices are
DIRMSST

and jI e
KLST�T

j related to changes in energy of the ST segment
and the ST–T complex respectively.

For ischemia detectors based on changes in the ST segment,
discrimination between IE and HRE (Task 3), both of which have
very similar patterns in the ST level function, could prove to be a
very useful tool for automatic screening of Holter episodes. The
results show that further information such as heart rate indices,
the QT interval or KL-based indices from both repolarization and
depolarization, help in discriminating between them, allowing the
sensitivity/specificity to increase to 84.5%/86.6%.

In order to diagnose pathological problems, we have attempted
to discriminate between ischemic and non-ischemic events (Task
4). In this case, we achieved an accuracy of 87.5%.

List of acronyms

LTST DB Long-Term ST Database

IE ischemic episodes

HRE heart rate episodes

BPCE body position change episodes

CCE conduction change episodes

TE transient episodes

SSE sudden step episodes

NIE non-ischemic events

IG ischemic group

HRG heart rate group

TG transient group

SSG sudden step group

NIG non-ischemic group

KLT Karhunen–Loève Transform

Tw T wave width

T pe T wave peak to T end interval
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monitoring and alternans detection, Med. Biol. Eng. Comput. 37 (1999) 175–
189.

[18] P. Arini, G.C. Beltran, E.R. Valverde, P. Laguna, T-wave width as an index for
quantification of ventricular repolarization dispersion: evaluation in an isolated
rabbit heart model, in: Biomedical Signal Processing and Control, vol. 3, Elsevier,
2008, pp. 67–77.
[19] J.P. Martı́nez, R. Almeida, S. Olmos, A.P. Rocha, P. Laguna, A wavelet-based ECG
delineator: evaluation on standard databases, IEEE Trans. Biomed. Eng. 51 (4)
(2004) 570–581.

[20] G.X. Yan, C. Antzelevitch, Cellular basis for the normal T wave and the electro-
cardiographic manifestations of the long-QT syndrome, Circulation 98 (1998)
1928–1936.

[21] E. Watanabe, I. Kodama, M. Ohono, H. Hishida, Electrocardiographic prediction of
the development and site of acute myocardial infarction in patients with unstable
angina, Int. J. Cardiol. (89) (2003) 231–237.

[22] E. Pueyo, L. Sörnmo, P. Laguna, QRS slopes for detection and characterization of
myocardial ischemia, IEEE Trans. Biomed. Eng. 55 (2) (2008) 468–568.

[23] P.A. Lachenbruch, Discriminant Analysis, Hafner Press, 1975.
[24] A. Smrdel, F. Jager, Diurnal changes of heart rate and sympathovagal activity for

temporal patterns of transient ischemic episodes in 24-hour electrocardiograms,
EURASIP J. Adv. Signal Process. 2007 (2007) 10, Article ID 32386.

[25] G. Dory, A. Rosenthal, S. Fischman, Y. Denekamp, B.S. Lewis, H. Bitterman, Changes
in the slope of the first major deflection of the ECG complex during acute coronary
occlusion, Comput. Biol. Med. 35 (2005) 299–309.

[26] A. Mincholé, E. Pueyo, P. Laguna, Transmural differences in rate adaptation of
repolarization duration quantified from ECG repolarization interval dynamics,
Computers in Cardiology (2009).

[27] H. Ritsema van Eck, J. Kors, G. van Herpen, Effect of ischemic action potentials on T
and U waves in the electrocardiogram, J. Electrocardiol. 40 (2007) S76.

[28] D. Lemire, C. Pharand, J.-C. Rajaonah, B. Dubé, A.-R. LeBlanc, Wavelet time entropy,
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