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Abstract 

This work studies the application of a mixed-mode 
electronic neural network to improve the output of 
nonlinear sensors which show behaviour variations for 
different samples.  
 
We present an analog current-based neuron model with 
digital weights, showing its architecture and features.  
Modifying the algorithm used in off-chip weight fitting 
main differences of the electronic architecture, 
compared to the ideal model, are compensated.  A small 
neural network based on the proposed architecture is 
applied to improve the output of NTC thermistors and 
GMR sensors, showing good results.  Circuit 
complexity and performance make these systems 
suitable to be implemented as sensor on-chip 
compensation modules. 
 

1. Introduction 
Artificial Neural Networks (ANNs) are computing tools 
consisting of small processing elements (artificial 
neurons), highly interconnected and arranged in layers.  
The system transfer function is fitted by a training 
process where input-output data pairs are iteratively 
presented, adjusting the system free parameters (called 
weights) that connect inputs from a neuron layer with 
the preceding neuron layer outputs.  ANNs are 
implemented in several ways, depending on the 
application requirements.  Thus, in systems where size, 
power consumption and speed are main constraints, 
electronic analog implementation is a suitable selection 
[1].  The present-day technology trend to shrinking bias 
voltages makes difficult to process high-resolution data 
codified in voltage-mode.  In this case, current-mode 
processing gives better results at lower bias, reducing 
the power consumption [2]. 

On the other hand, implementation of reliable long-
term and mid-term analog programmable weights 
results very hard because of mismatching and current 
offsets.  Due to the high accuracy of digital storage in 
register-based structures, combining both electronic 

technologies can improve system performance.  
Previous works [3] presented the use of mixed-mode 
multipliers in artificial neuron implementation, showing 
promising results applied to real problems. 
One of the application fields where ANNs are useful is 
adaptive sensor output improvement, applied to sensors 
that present nonlinear behaviour in its response, such as 
negative temperature coefficient resistors mounted on a 
resistive divider (NTC, Fig. 1) or giant 
magnetorresistive resistors (GMR, Fig. 2).  Another 
previous works show the use of these processing 
systems implemented in digital technology [4] or as 
analog circuits, but applied to classification tasks [5]. 
This paper shows the application of current-based 
mixed-mode adaptive circuits to the improvement of 
non-linear sensors output.  In Section 2, the proposed 
current-based mixed-mode artificial neuron is presented 
and simulated behaviour is compared to the ideal one.  
In order to improve neuron operation, some changes in 
the training process are proposed.  Section 3 shows an 
implementation of an adaptive linearization circuit 
based on this structure, showing the results for two 
samples of two different sensors.  Finally, some 
conclusions of this work are presented. 
 

 
Fig. 1.  NTC behavior mounted on a resistive divider (two 

different samples) 



 
Fig. 2.  GMR behavior (two different samples) 

 
2. Current-based Neuron Circuit 

The proposed neuron circuit consists of a current-mode 
four-quadrant analog-digital multiplier plus a current 
conveyor (CC) that performs the activation function.  
The main mixed-mode analog-digital neuron building 
blocks are shown in Fig. 3.  Fig. 3a shows the mixed-
mode multiplier.  Input current is multiplied by a factor 
lower or equal than 1 using a transistor-based R-2R 
current ladder [6], [7], controlled by the digital weight 
bits bi.  Resulting sign is selected modifying the current 
flow direction: when the weight sign is positive (sign bit 
is ‘0’), current enters into the multiplier; however, if 
weight is negative (sign bit is ‘1’), the current direction 
is inverted using the current follower described in [8].  
The ideal multiplier output is 
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Fig. 3.  Main multiplier blocks: (a) analog-digital multiplier; 
(b) tanh output circuit 

Real multiplier operation is described by 

 pwpout 0136726.0974865.0 −=  (2) 

Where p is the current that inputs to the multiplier, w is 
the digital weight and out is the current output.  
Divergences between real and ideal multiplier operation 
are shown in Fig. 4. 
The non-linear operation is executed using a class AB 
CC (Fig. 3b).  Fig. 5 shows circuit operation compared 
to the ideal tanh. 
The most important neuron non-ideality is due to the 
non-linear output circuit.  As Fig. 5 shows, circuit 
presents differences in the non-linear corners (upper and 
lower limits of the central range) plus an additional 
output offset.  Both effects modify the operation of the 
neural networks implemented using this processing 
element.  In order to fit the network weights and 
correcting the undesired effects, we have selected a 
perturbative learning algorithm [9] executed off-line: 
Network is simulated on a computer in the training 
phase; next, fitted weights are loaded in the digital 
storage blocks of the processing elements.  The use of a 
perturbative algorithm is due to the robustness to neuron 
non-idealities compared to gradient descent-based 
techniques [10].  Moreover, we have verified that the 
network improves its performance simulating in the 
training phase a half of the hidden layer neurons with 
the inverse of the real non-linear operation function.   
 

 
Fig. 4.  Differences between the four quadrant mixed-mode 

multiplier operation and the ideal multiplication 
 

 
Fig. 5.  Class AB current conveyor operation (continuous line) 

compared to the ideal one (dotted line) 



Once the desired performance is reached, the inverted 
output function is replaced by the real one in the 
corresponding simulated processor, changing the sign of 
the corresponding neuron weights.  A fast network re-
training gives higher performances than using the actual 
output function in the training phase (Fig. 6).  In the 
example shown in Fig. 6, total error remains lesser than 
1K along the sensor span. 
 

3. Sensor output improvement 
The proposed processing element has been used to 
extend the linear range of two different sensors: two 
samples of NTC resistors and two samples of GMR 
sensors. 
 
3.1. NTC sensors 
A neural network with 1 input (nonlinear sensor output), 
1 output (correction that must be added to the sensor 
output) and a two hidden neurons layer is used to 
extending the linear range of two different NTC sensors 
(Fig. 1), keeping the error lower than 1K.  Each sensor 
has a data set consisting of 71 temperature-voltage 
samples in the range of 252-323K degrees.  A set of 10 
patterns are reserved for testing purposes; the rest is 
applied in the training cycle.  Sensor output errors are 
compared to the corrected output errors in Fig. 6b and 7 
 

 
(a) 

 
(b) 

Fig. 6.  Network output error (continuous line) compared with 
the sensor output error for an NTC when (a) training is 

developed normally and (b) a half of the hidden neurons are 
simulated using the inverse of the actual output 

respectively. Fig. 8 shows the resulting corrected output 
of one of the NTC sensors compared to the sensor 
output mounted on a resistive divider and the ideal one. 
 
3.2. GMR sensors 
As in the previous case, two samples of GMR sensors 
(Fig. 2) are used to testing the goodness of the 
proposed technique to extend the linear range of the 
sensor output.  In this case, the number of patterns 
available along the sensor span (180-355 degrees) is 
175; 20 of them are kept for the test/testing stage.  
Neural network consists of 1 input, 1 output and 4 
processing elements in a hidden layer.  Figs. 9 and 10 
show the errors achieved using this technique 
compared to the output errors for both sensor samples.  
Fig. 11 show the resulting corrected output compared 
to the sensor output and the ideal linear one. 
 

4. Conclusions 
This paper shows the application of adaptive mixed-
mode circuits to the improvement of non-linear sensors 
output.  The proposed processing element model 
consists of a current-based artificial neuron with an 
analog-digital multiplier plus a current conveyor that 
implements the non-linear output function.  Digital  
 

 
Fig. 7.  Output network error (continuous line) compared to 

the second NTC sensor output.  Error remains under the 
proposed limit 

 

 
Fig. 8.  Output network (continuous line) compared to the 

sensor output (dashed line) and ideal straight output (dotted 
line) for an NTC sensor 



 
Fig. 9.  Output network error (continuous line) compared to 

the first GMR sensor output (dotted line) 
 

 
Fig. 10.  Output network error (continuous line) compared to 

the second GMR sensor output (dotted line) 
 

 
Fig. 11.  Output network (dotted line) compared to the sensor 
output (dashed line) and ideal straight output (continuous line) 

for a GMR sensor 
 

weight codification allows the long-term storage with 
the selected accuracy.  Our application uses 8-bit 
precision, multiplying the current inputs using the 
mixed-mode multiplier.  The use of a perturbative 
training algorithm lets a better weight fitting than 
gradient descent-based techniques.  Moreover, changing 
the sign of the non-linear output function in a half of the 
neurons in the simulated training phase improves 
dramatically the system performance. 
Applying this system to the linear output extension of 
two samples of NTC and GMR, results show very good 

results.  Table 1 presents the linear output range 
extension achieved with this technique, assuming a 
maximum error of 1K for NTC temperature sensors and 
1º for angular position GMR sensors. 
 

Sensor Linear range Extended range % 

NTC #1 274-308K 252-323K 108 

NTC #2 274-308K 252-323K 108 

GMR #1 252-305º 198-328º 145 

GMR #2 234-292º 202-322º 107 

Table 1.  Results achieved extending the linear range of each 
sensor using the proposed neuron model 
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