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Abstract

In this work we attempted the stratification of patients
at risk for VT by means of BSPM recorded during
sinus rhythm, based on the evidence that specific
arrhythmogenic alterations manifest on body surface
potentials. Due to the high dimensionality of BSPM
data and the limited number of available patients, a
feature extraction step was necessary prior to the classifier
design. Feature extraction was performed by means of
linear expansions of two different time intervals: QRS
and ST-T complexes. Two approaches were studied:
the Karhunen-Love transfom (KLT) and spatio-temporal
expansions. A multivariate linear discriminant analysis
was applied to the extracted features to classify the study
population in two groups: VT and non-VT. Our results
showed that spatio-temporal features (SE=83%, SP=86%)
obtained similar classification results than KLT features
(SE=78%, SP=93%) with a lower computational cost. For
comparison, a method reported in the literature based on
QRST integral maps was implemented, obtaining results
within the same range (SE=88%, SP=72%).

1. Introduction

Ventricular tachycardia (VT) is a major factor of
mortality in patients with heart disease. Several
approaches have been investigated in order to identify
the presence of arrhythmogenic regions in the ventricular
myocardium, such as electrophysiological studies,
ambulatory monitoring, exercise testing, 12-lead ECG
and body surface potential mapping (BSPM). There is
some evidence that specific electrophysiological alterations
during sinus rhythm are associated with vulnerability to
VT and manifested in body surface potentials. Therefore,
BSPM analysis is particularly challenging since nearly all
noninvasively-available electrocardiographic information
can be captured. Previous works showed that subjects at
risk for VT have unique map characteristics [1], e.g. the
spatial distribution of QRST integrals over the torso was
used in [2] to stratify patients at risk for VT.

In this study we attempted to identify patients at risk for
VT by means of BSPM recorded during sinus rhythm. The
large dimensionality of BSPM data in relation to the limited
number of patients of the study population made necessary
the reduction of the dimensionality of the original BSPM
space prior to the classifier design to avoid the ”Hughes
phenomena” [3]. First, feature extraction was performed
by means of linear expansions; then, a linear discriminant
analysis was applied to the reduced feature space to stratify
patients at risk for VT. Two approaches of linear expansions
were studied: the Karhunen-Loève transform (KLT) and
spatio-temporal (TS) expansions, proposed in [4] as a
low-complexity approximation to KLT. For comparison
purposes, the method in [2], based on the QRST integral,
was also implemented.

2. Materials and Methods

2.1. Study Population

The study population consisted of 705 patients:
259 normals (noMI/noVT), 69 with no evidence of a
previous myocardial infarction (MI) but with a history of
spontaneous VT (noMI/VT), 258 with no history of VT
but a previous MI (MI/noVT) and 119 with a history of
VT and previous MI (MI/VT). The diagnosis of MI was
based on non-ECG evidence in the acute phase and the
presence of diagnostic 12-lead ECG changes. Patients with
a history of VT presented with electrocardiographically
documented spontaneous sustained VT in the absence of a
reversible cause. Normal subjects had no clinical evidence
of arrhythmias or heart disease on history, 12-lead ECG,
physical and echocardiographic examination. All subjects
were informed of the study’s procedures, in accordance
with the ethical guidelines approved by the institutional
ethics committee.

2.2. Body Surface Potential Mapping

BSPMs were recorded at the Victoria General Hospital,
Halifax, NS, and at the Foothills Hospital, Calgary, AB,



Canada, using identical protocols and acquisition systems
(sampling rate of 500 Hz, amplitude resolution of 2.5µV ).
The BSPM lead array had 120 leads: 3 limb and 117
unipolar chest leads (76 on the front and 41 on the back).
BSPMs were recorded during sinus rhythm and supine
position for 15 consecutive seconds. QRST complexes were
identified and processed to yield a single averaged complex
for each lead. The onset and end of ECG waves were
determined from the averaged complexes [2].

2.3. Feature Extraction

Feature extraction from BSPMs was performed by means
of linear expansions. Each BSPM was represented by a
N × L matrix X (N samples,L channels) which can be
decomposed as a linear combination ofN × L elementary
matricesBij,

X =

N∑

i=1

L∑

j=1

wijBij. (1)

The elementary matricesBij are often selected in order
to pack most of the energy ofX in a small subset of
r�NL weighting coefficientswij . Two approaches of
linear expansions were considered in this work: KLT
and TS expansions. Their characteristics and application
to multichannel signals, like BSPM, were described in
[4]. The basis functions of KLT are built from the
dominant eigenvectors of the data covariance matrix. In
the case of TS expansions, the basis functions are rank-
one matrices of the formBij = tisj

T , beingti andsj the
dominant eigenvectors of the average temporal and spatial
covariance matrices, respectively. Each TS basis function
has associated aneigenvalue(λk), defined asλk = λti ×
λsj , whereλti andλsj are the eigenvalues associated toti

andsj, respectively.
The features extracted for BSPMs were ther-th dominant

coefficients for KLT and TS approaches. The parameter
r should be chosen as a trade-off between energy
representation and basis function generality. In this work,
the rule of thumbr < (training set size)1/2 was followed to
avoid using basis functions overtunned to the training set.

2.4. Classification

A stepwise multivariate linear discriminant analysis was
independently applied to KLT and TS features to classify
subjects into the VT group (noMI/VT + MI/VT) and the
non-VT group (noMI/noVT + MI/noVT). The criterion used
in the variable inclusion/rejection was theWilk’s lambda
minimization. The number of stepwise selected variables
followed the rule#variables< (smallest group size)1/2.
Discriminant analysis assumes that classification variables

are Gaussian within each of the groups. The Kolmogorov-
Smirnov test was used to check the normality of the
variables (ap-statistic value> 0.05 assessing the normality
of a variable). All statistical analysis was performed using
SPSS 11.5.

Classification performance was quantified by the
indexes: sensitivity (SE), specificity (SP ), positive
predictive value (P+), negative predictive value (P−) and
exactness (EX).

In this work the study population was divided into two
sets: a training set of 200 subjects (50noMI/noVT, 50
MI/noVT, 50 noMI/VT, 50 MI/VT), used to derive the
basis functions (feature extraction) and the discriminant
functions (classification), and a test set of 76 subjects (19
noMI/noVT, 19 MI/noVT, 19 noMI/VT, 19 MI/VT), used
to evaluate classification performance. To further support
classification results on the finite-size test set, classification
performance was also evaluated on the training set by
means of cross-validation (leave-one-outmethod).

2.5. QRST-integral

For comparison purposes, the method in [2] was also
implemented. Feature extraction was accomplished in two
steps: first, QRST-integral was calculated for each lead as
the algebraic sum of the sampled potentials within QRST
complex multiplied by the sampling interval of 2 ms; then,
KLT was applied to QRST-integral maps. Finally, the
r-th dominant coefficients constituted the set of features
entering a stepwise discriminant analysis, as the explained
in Section 2.4.

3. Results

In order to study depolarization and repolarization
properties, two different time intervals were considered:
QRS complex (160 ms centered at the QRS fiducial point,
defined as the median center of gravity of the QRS complex
among all leads) and ST-T complex (450 ms from QRS
end). QRS complex maps were represented by matrices
QRS-BSPM dimensioned81 × 117. ST-T complex maps
were represented, after decimating the signal by a factor
of 5, by matrices STT-BSPM dimensioned45 × 117. The
STT-BSPMs were padded with zeros when ST-T complexes
were shorter than 450 ms.

BSPM matrices were normalized to have unit energy
(‖X‖ = 1), in order to equalize the contribution of all
subjects of the training set. The normalization was also
performed in the test set because the interesting point was
the relative contribution of each basis function to the whole
BSPM. In this way, the ECG complexes’ energy would not
affect transformed coefficients.



Feature extraction was independently applied to QRS-
BSPMs and STT-BSPMs as explained in Section 2.3. A
total of 14 KLT features (denoted QRS-KL and STT-
KL, respectively) and 14 TS features (QRS-TS and STT-
TS, respectively) were considered. Stepwise discriminant
analysis was independently applied to different variable
sets to discriminate between the VT and non-VT groups.
The variable sets were the QRS-KL, STT-KL, QRS-TS
and STT-TS features. Two other variable sets were also
considered, QRS-STT-KL and QRS-STT-TS, containing
the most significant features from both intervals. A
maximum number of 10 variables was allowed in the
discrimination (Section 2.4).

All variables had normal distribution according to
Kolmogorov-Smirnov test, but for the most dominant
STT-TS feature within the non-VT group. Anarcsin
transformation was performed to correct its lack of
normality but classification results did not change.

The EX achieved in the test set by the different variable
sets is shown in Fig. 1 as a function of the number of
variables used. It can be appreciated that there is a threshold
above which EX is not increased, but even decreased, as
using a higher number of variables.
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Figure 1. Exactness as a function of the number of
variables in the test set.

Classification indexes achieved in the test by each
variable set, when using the variables giving the maximum
EX, are shown in Table 1.

The QRST-integral used in [2] was applied to our study
population as explained in Section 2.5. Exactness achieved
in the test set as a function of the number of variables can
be seen in Fig.1, where the existence of a threshold is also
observed in this case.

Cross-validation classification results achieved by the
different variable sets in the training set are shown in
Table 3, mostly supporting the results obtained in the test

Table 1. Classification results in the testset
Variable set SE SP P+ P- EX
QRS-KL(6) 68 87 84 73 77
QRS-TS(9) 68 79 76 71 73
STT-KL(7) 89 68 74 87 79
STT-TS(6) 92 76 80 91 84

QRS-STT-KL(9) 68 89 87 74 79
QRS-STT-TS(10) 76 92 91 80 84
QRSTintegral(6) 66 100 100 75 83

The number in brackets represents the number of variables
used.

set.

Table 2. Cross-validation classification results in the trainingset

Variable set SE SP P+ P- EX
QRS-KL 79 93 92 82 86
QRS-TS 81 83 83 81 82
STT-KL 76 80 79 77 78
STT-TS 76 84 83 78 80

QRS-STT-KL 78 93 92 81 85
QRS-STT-TS 83 86 86 83 84
QRST-integral 88 72 76 86 80

4. Discussion and conclusions

BSPM constitutes an encouraging technique in
noninvasive cardiology since nearly all available
electrocardiographic information can be captured. In
this work we dealt with the identification of patients at
risk for VT by means of features extracted from BSPM
recorded during sinus rhythm. In an attempt of designing
the optimal classifier using all available information, we
had previously implemented aparametric-linearclassifier,
a parametric-quadraticclassifier and anonparametric
classifier, based on [3]. Our results showed that the number
of subjects in the training set used to design the classifier
was insufficient given the dimensionality of the data
because of the so-called ”Hughes phenomena” [3]. As a
consequence the classifiers were overfitted to the particular
study population and failed in prospective populations.
Therefore, a feature extraction step was necessary to reduce
BSPM dimensionality while maintaining the important
diagnostic information. Then, the classifier was designed
from the reduced feature space.

Feature extraction was performed by means of linear
expansions. The Fourier transform had been studied to
reduce BSPM dimensionality [5], but the requirement of
equally spaced samples constituted a restrictive limitation
in the spatial domain. Two approaches were considered



in this study: KLT and TS. KLT had been previously
applied to BSPMs in other works to eliminate spatial [2]
and temporal redundancies [6]. One of the limitations of
the KLT is the high computational load and complexity
required for computing the basis functions and the
transformed coefficients. In [4] TS was proposed as a
low-complexity approximation of the KLT, getting similar
energy packing performances in a 12-lead ECG database.
KLT and TS were compared in this work in terms of
diagnostic classification performance. The number of
subjects in the training set limited to 14 the order of
KLT and TS basis function estimated avoiding the lack
of generality. Higher order basis functions would collect
particular details from the training set instead of the general
behaviour of BSPMs.

The choice of a linear classifier was based on its
simplicity, relative insensitivity to a limited-size training
set and good performance even when unfulfilled underlying
assumptions. Results show the existence of a threshold
in the number of variables used by the classifier above
which classification performance did not longer improved.
Classification performance achieved by KLT and TS
features were within the same range of exactness, slightly
varying (< 5%) depending on the population and the
variables used in the classifier. This extends the findings
in [4], suggesting that TS can be used as an approximation
of KLT not only for energy packing but also for diagnostic
classification in BSPM analysis. In this case, the main
advantage of TS over KLT is the complexity reduction in
basis functions’ computation (fromO((NL)3) toO(N3 +
L3)). The complexity in estimating the transformed
coefficients is lower for TS than for KLT ifr>(N + L),
which is not the case in this work.

Classification results achieved by depolarization
and repolarization features corroborate the previous
finding that vulnerability to VT alters depolarization
[7] and repolarization properties [8], and suggest that
these alterations may be correlated since only a slight
improvement in classification performance is achieved
when depolarization and repolarization periods are jointly
considered.

QRST-integral maps have been widely analyzed as an
indicator of vulnerability to VT [1, 2]. In [2] the
spatial distribution of QRST-integral maps were reported
to identify patients at risk for VT with a SE of 90%
and a SP of 80%. In our study population classification
performance achieved by QRST-integral maps was slightly
lower (SE=88%, SP=72%), within the same range of KLT
and TS features (SE≈80, SP=≈90 in average). These
results suggest that the relevant information for identifying
patients at risk for VT is contained in the spatial distribution
of BSPM rather than in the temporal waveform, since
the spatial distribution of a single measurement per beat
(QRST integral) obtained similar results than when the

whole QRST complex was considered.
The main limitation of this work is the insufficient

number of patients available, given the data dimensionality,
to design the classifier [3]. Therefore, it was extremely
important to derive a reduced feature space without lost of
diagnostic information and avoiding the overtunning.

In a futher study, the discriminant KLT and TS
features selected by the stepwise procedure should
be physiologically interpreted to understand how the
arrhythmogenic substrate may manifest through them.
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C, Smith E, Hoŕaček B. Spatial features in body-surface
potential maps can identify patients with a history of sustained
ventricular tachycardia. Circulation 1995;92:1825–1838.

[3] Fukunaga K. Introduction to statistical pattern recognition.
San Diego, California: Academic Press, 1990.

[4] Olmos S, Mart́ınez J, S̈ornmo L. Spatio-temporal linear
expansions for repolarization analysis. In Computers in
Cardiology. Memphis, TN, USA: IEEE Computer Society
Press, 2002; 689–692.

[5] Monro D, Guardo R, Bourdillon P, Tinker J. A Fourier
technique for simultaneous electrocardiographic surface
mapping. Cardiovasc Res 1974;8:688–700.

[6] Evans A, Lux R, Burgess M, Wyatt R, Abildskov J.
Redundancy reduction for improved display and analysis of
body surface potential maps. II Temporal compression. Circ
Res 1981;49:197–203.

[7] Faug̀ere G, Savard P, Nadeau R, Derome D, Shenasa M, Page
P, Guardo R. Characterization of the spatial distribution of
late ventricular potentials by body surface mapping in patients
with ventricular tachycardia. Circulation 1986;74:1323–1333.

[8] Okin P, Devereux R, Fabsitz R, Lee E, J.M.Galloway, Howard
B. Principal component analysis of the T wave and prediction
of cardiovascular mortality in american indians. The Strong
Heart Study. Circulation 2002;105:714–719.

Address for correspondence:

R. Bailón. Dep. Ing. Electŕonica y Comunicaciones
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