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ABSTRACT

Recently, the application of support vector machines (SVM)
has been proposed for increasing the robustness of array
beamforming against signal mismatch situations and pro-
viding additional sidelobe control. In this approach, the
conventional Capon cost function is modified by including
a regularization term that penalizes differences between the
actual and the ideal array responses. The resulting cost
function is convex with a unique global minimum that can
be found using quadratic programming (QP) techniques. This
paper expands this approach in order to reduce the computa-
tional cost of the SVM solution by means of an iterative re-
weighted least squares (IRWLS) procedure. The robustness
of the proposed beamformer is examined in several mis-
match scenarios, showing a good performance even when
the signal DOA mismatch error is underestimated: a situa-
tion where other robust approaches typically fail.

1. INTRODUCTION

Increasing the robustness of adaptive beamforming tech-
niques has focused considerable efforts during the recent
years. Several works have shown that the traditional mi-
nimum variance distortionless response (MVDR) or Capon
beamformer degrades considerably its performance in prac-
tical scenarios with limited number of available snapshots,
mismatches between the assumed direction of arrival and
the actual one, or calibration errors.

Several approaches have been proposed to improve the
robustness of the MVDR beamformer, for instance, diagonal
loading methods [1][2], and eigenspace-based beamformers
[3]. In addition, when the number of snapshots used for co-
variance matrix estimation is insufficient or the scenario is
favourable in terms of SNR, the MVDR beamformer can
present unacceptably high sidelobes, which reduces its per-
formance in the presence of unexpected interferences. To
overcome this drawback, sidelobe control has beenproposed
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in [4] and [5]. These approaches modify the MVDR beam-
forming problem to incorporate additional constraints out-
side the mainlobe beampattern. In [4], the corresponding
optimization problem is solved by second-order cone (SOC)
programming techniques. If a feasible solution does not
exist, the sidelobe levels defining the constraints must be
relaxed and a new optimization problem must be solved.
Moreover, this technique does not consider the signal mis-
match problem.

In [5], the design of a robust adaptive beamformer is
approached from the support vector machine (SVM) frame-
work [6]. The MVDR beamforming problem is reformu-
lated by incorporating an additional regularization term that
penalizes sidelobe levels while, at the same time, allows a
certain error in the desired signal direction. The resulting
cost function can be interpreted as a support vector ma-
chine for regression (SVR), whose unique solution has tra-
ditionally been found using quadratic programming tech-
niques. In comparison to [4], the proposed robust SVM-
based beamformer always provides a solution even if the
problem is not feasible.

In this paper the SVM beamformer is obtained by means
of an iterative re-weighted least square (IRWLS) algorithm,
which considerably reduces the complexity of the conven-
tional quadratic programming techniques. This procedure
has been successfully applied to solve SVM’s [7] and it has
recently proven to converge to the SVM solution [8]. We
present simulation examples where the performance of the
proposed SVM beamformer solved via IRWLS is compared
with the Capon beamformer and with other robust beam-
forming techniques. The IRWLS beamformer exhibits an
increased robustness against the signal mismatch problem,
even when the DOA estimation error is larger than expected.

2. BACKGROUND

Consider a narrowband beamformer withM sensors, its
output is given by

y(k) = wHx(k),



wherek is the time index,x(k) = [x1(k), . . . , xM (k)]T

∈ CM×1 is the complex vector of array observations,w =
[w1, . . . , wM ]T ∈ CM×1 is the complex vector of beam-
former weights, and(.)T and(.)H denote the transpose and
Hermitian transpose, respectively. The observation (snap-
shot) vector is given by

x(k) = s(k)a(θs) +

Ni∑

j=1

ij(k)a(θj) + n(k),

wheres(k) and ij(k) are the signal of interest (SOI) and
interference waveforms;n(k) represents the noise signal.
The signal and interference directions of arrival (DOA) are
θs andθj , j = 1, . . . , Ni, respectively, with corresponding
steering vectorsa(θs) anda(θj).

The classical formulation for the MVDR beamformer is

min
w

E
[
|y(k)|2

]
subject to wHa(θs) = g (1)

whose solution is given by

w0 =
g∗R−1

x a(θs)

a(θs)HR−1
x a(θs)

, (2)

where∗ denotes conjugate. In practice, the exact covariance
M ×M matrix Rx is not available and is replaced by the
sampled covariance matrix̂Rx which is given by

R̂x =
1

N

N∑

k=1

x(k)x(k)H , (3)

whereN is the number of observed snapshots.

3. ROBUST BEAMFORMING WITH SIDELOBE
CONTROL

In this section, the conventional MVDR beamforming pro-
blem is modified by incorporating additional constraints in
order to increase the robustness against mismatches in the
SOI steering vector, as well as to control the sidelobe level.
Likewise [4], the additional constraints are included as a
regularization term of the array output power [5].

Let us consider a grid of directions of arrivalθi, i =
1, · · · , P ; which sample the beampattern in [−90o, 90o].
We define an angular mainlobe beamwidth4 centered at
the assumed SOI direction of arrivalθs. P1 from the total
set of angles sample the mainlobe beamwidth, includingθs:
in this way, we account for a possible signal mismatch error.
The remainingP2 = P −P1 angles sample the beampattern
outside the mainlobe. Based on the formulation of SVMs
[6], we consider the following regularized MVDR problem

min
w

1

2
wHRxw + C

P∑

i=1

|di −wHa(θi)|ε, (4)

where

|di −wHa(θi)|ε = max
{

0, |di −wHa(θi)| − ε
}
, (5)

is the so-called Vapnik’sε-insensitive loss function [6] and
di is the desired beamformer output

di =

{
0 if |θi − θs| > 4,

gR + jgI if |θi − θs| ≤ 4,
(6)

Note that the regularized cost function (4) establishes a
trade-off between the array output power and a term that pe-
nalizes mismatches larger thanε between the actual and de-
sired array responses for the given angle grid. Therefore, the
procedure can be interpreted as a regression problem where
the parameterε acts as a sidelobe control parameter while, at
the same time, allows some tolerance in the array response
for the assumed signal arrival angle. The optimal values of
C andε must be obtained for each scenario, depending on
the number of sensors, the noise level, the required sidelobe
level and the presumed DOA estimation error.

In terms of real variables we can write

wHRxw = w̃T R̃xw̃

where
w̃T =

[
wT
R wT

I

]

and

R̃x =

[
Re(Rx) −Im(Rx)
Im(Rx) Re(Rx)

]

.

Likewise, the beamformer output for each DOA can be writ-
ten in terms of real variables as

wHa(θi) = w̃T ã(θi) + jw̃T ã′(θi) (7)

whereã(θi) andã′(θi) ∈ R2M×1 are given by

ã(θi)
T =

[
aTR(θi) aTI (θi)

]

ã′(θi)
T =

[
aTI (θi) −aTR(θi)

]
. (8)

For notational simplicity, we define the following com-
pact variablēa ∈ R2M×2P ,

ā(i) =

{
ã(θi), i = 1, · · ·P,

ã′(θi−P ), i = P + 1, · · · 2P.

Hence, the initial complex formulation (4) can be written
in terms of real variables as

J(w̃) =
1

2
w̃T R̃xw̃ + C

2P∑

i=1

|yi − w̃T ā(i)|ε (9)

where the real variableyi = Re(di) for i = 1, · · · , P , and
yi = Im(di) for i = P + 1, · · · , 2P , represents the desired
output for each product̃wT ā(i).



Introducing a set of slack positive variablesξ andξ̃, the
cost function (9) can be written as the following optimiza-
tion problem with constraints [6]: minimize

L(w̃, ξ, ξ̃) =
1

2
w̃T R̃xw̃ + C

2P∑

i=1

(ξi + ξ̃i) (10)

subject to

w̃T ā(i)− yi ≤ ε+ ξi, (11)

yi − w̃T ā(i) ≤ ε+ ξ̃i, (12)

ξi, ξ̃i ≥ 0 (13)

for i = 1, · · · , 2P .

4. IRWLS-PROCEDURE

Introducing the constraints into (10), the solution of the op-
timization problem is a saddle point of the following La-
grange function [6]

L(w̃, ξ, ξ̃,α, α̃,γ, γ̃) =
1

2
w̃T R̃xw̃ −

2P∑

i=1

(
γ̃iξ̃i + γiξi

)

+ C

2P∑

i=1

(
ξi + ξ̃i

)
−

2P∑

i=1

αi
(
yi − w̃T ā(i) + ε+ ξi

)

−
2P∑

i=1

α̃i

(
w̃T ā(i)− yi + ε+ ξ̃i

)
, (14)

minimum with respect to the primal variables̃w, ξi and
ξ̃i; and maximum with respect to the Lagrange multipliers
αi ≥ 0, α̃i ≥ 0, γi ≥ 0 andγ̃i ≥ 0 , for i = 1, · · · , 2P .

Similarly to other SVM-based problems, here the opti-
mal beamformer can be expanded in terms of a set of stee-
ring vectors, which are the support vectors for the problem.
However, due to the output power term in the cost function,
now the support vectors in the expansion are transformed
by the inverse of the autocorrelation matrix; in particular
we have

w̃ =
2P∑

i=1

(αi − αi)R̃
−1
x ā(i).

The support vectors and their corresponding Lagrange
multipliers are typically found by means of quadratic pro-
gramming (QP) techniques. Recently, it has been shown
[7] that the high computational cost of the original proce-
dure can be reduced by transforming the QP problem into
an equivalent least squares problem [7]. By applying an it-
erative re-weighted least square (IRWLS) algorithm the re-
quirements both in time and memory are reduced without
any loss of performance [8].

To obtain an IRWLS procedure, we apply the Karush-
Kuhn-Tucker (KKT) conditions, which impose that the terms
depending onξi andξ̃i must be removed at the solution [7].
Therefore, the cost function (14) can be written as

L(w̃,α, α̃) =
1

2
w̃T R̃xw̃ −

2P∑

i=1

αi
(
yi − w̃T ā(i) + ε

)

−
2P∑

i=1

α̃i
(
w̃T ā(i)− yi + ε

)

=
1

2
w̃T R̃xw̃ −

1

2

2P∑

i=1

(
fie

2
i + f̃iẽ

2
i

)
, (15)

where

ei = ε+ yi − w̃T ā(i), fi =
2αi

ε+ yi − w̃T ā(i)
,

ẽi = ε− yi + w̃T ā(i), f̃i =
2α̃i

ε− yi + w̃T ā(i)
.

Observe that (15) can be understood as a weighted least
square equation withei and ẽi as prediction errors andfi
andf̃i are its corresponding weights. The minimization of
(15) must be carried out iteratively [7].

According to the Representer Theorem [6][7], it can be
shown that the coefficients̃w, which minimize (14), can be
expressed as

w̃ =

2P∑

i=1

(
β̃i − βi

)
R̃−1
x ā(i) = R̃−1

x ΦT γ, (16)

whereΦ andγ are given by

Φ = [ā(1), ā(2), . . . , ā(2P )]
T (17)

γ =
[
β1 − β̃1, β2 − β̃2, . . . , β2P − β̃2P

]T
. (18)

When the IRWLS procedure converges, the variablesβ̃i
andβi achieve the same values as the Lagrange multipliers
α̃i andαi.

Substituting (16) into (15) the minimum of the cost func-
tion with respect toγ for fixedfi andf̃i is found by solving
the linear equation system [7]

[
H−D−1

f̃+f

]
γ = [y − εE] (19)

where

(H)i,j = ā(i)T R̃−1
x ā(j), i, j = 1, . . . , n

(
Df̃+f

)
i,j

= δ[i− j](f̃i + fi), i, j = 1, . . . , n

y = [y1, y1, . . . , y2P ]
T
,

E =

[
f̃1 − f1

f̃1 + f1

,
f̃2 − f2

f̃2 + f2

, . . . ,
f̃2P − f2P

f̃2P + f2P

]T

.
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Fig. 1. Direction mismatch of2o: SVM (solid line),
SpheRCB (dotted line) and Capon (dash-dotted line).
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Fig. 2. Direction mismatch of2o: SINR versus SNR.

Finally, sincefi and f̃i depend on the Lagrange mul-
tipliers αi and α̃i, we can substitute them using the KKT
conditions

fi =

{
0 if ei < 0,

2C
ei

if ei ≥ 0,
(20)

and equally forf̃i.

5. SIMULATION RESULTS

To evaluate the performance of the proposed beamforming
technique, some computer experiments are carried out in
scenarios with source steering vector mismatches. We as-
sume a uniform linear array withM = 10 sensors and
half-wavelength sensor spacing. All signal waveforms are
i.i.d. QPSK. Spatially white Gaussian noise is assumed
(Q = σ2

nI). The power of the signal of interest (SOI) is
σ2
s = 10 dB, and the power of the interferences isσ2

j = 30
dB,∀j. The actual source DOA isθs = 0o and the DOAs of
the interferences areθ1 = −30o, θ2 = 30o andθ3 = 70o.
The signal-to-noise ratio SNR is 10 dB. In order to compute
R̂x,N = 50 snapshots are used. In all scenarios, each point
is the average from 200 simulations.
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Fig. 3. Direction mismatch of2o: SINR versus N.
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Fig. 4. Computational cost of QP and IRWLS.

Example I

In the first scenario, the presumed source signal DOA
is θa = 2o. Defining an angular beamwidth aroundθa of
4 = 2o, our IRWLS approach employs an uniform grid
with P1 = 20 DOAs inside the mainlobe andP2 = 40 out-
side the mainlobe. Fig. 1 shows a single realization of the
beampatterns of the proposed SVM approach (C = 1 and
ε = 0.001) compared to the Capon beamformer and the ro-
bust array beamformer with spherical constraint proposed in
[1] with control parameterε = 4.5 (denoted as SpheRCB).
It is demonstrated in [1] that the SpheRCB beamformer is
equivalent to the SOC method proposed in [2]. Clearly, we
observe that the SOI is considered to be an interference by
the Capon beamformer. On the other hand the source signal
is preserved by the SVM and the SpheRCB approaches, but
the former has lower sidelobe level.

Fig. 2 depicts the output SINR versus the input SNR.
As can be seen, the SVM approach behaves similar to the
SpheRCB beamformer in the low SNR region, but the for-
mer achieves better performance for high SNR. Fig. 3 shows
the SINR versus the number of snapshotsN , used to esti-
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Fig. 5. Direction mismatch of5o: SINR versus SNR.

mateR̂x: our beamformer operates slightly better than the
SpheRCB when the number of snapshotsN is less than 150.
On the contrary, if N increases, the SpheRCB algorithm out-
performs the SVM-based beamformer. Hence, we can con-
clude that the proposed beamformer is appropriate for sce-
narios when the number of available snapshots is scarce.

Compared to QP techniques [5], as shown in Fig. 4, an
IRWLS procedure reduces considerably the computational
cost of the SVM problem. This reduction is especially no-
ticeable when the number of considered anglesP increases.

Example II

In the second example, we simulate a scenario where the
error in the source DOA is underestimated for both the SVM
and SpheRCB beamformer. The presumed source DOA is
θs = 5o (the actual one isθs = 0o). For the SpheRCB
approach, we useε = 4.5, which is not large enough for
an error of5o in the source signal DOA [1]. For the SVM
beamformer, the maximum error is controlled by the main-
lobe beamwidth, which is chosen as4 = 2o.

Figs. 5 and 6 are similar to Figs. 2 and 3. In both ex-
amples, the performance of the SpheRCB beamformer de-
grades considerably; however, the SVM beamformer still
achieves good results even when the maximum mismatch
error is underestimated. This increased robustness can be
also explained by looking at the broad mainlobe provided
by the SVM beamformer in Fig. 1.

6. CONCLUSIONS

The SVM-beamformer has been recently proposed as a way
to achieve increased robustness against the signal mismatch
problem as well as sidelobe control. In this paper the high
computational cost of the original SVM solution has been
significantly reduced by transforming the original QP pro-
blem into an equivalent reweighted least squares problem.
The robust performance of the proposed beamformer, even
when the mismatch error is underestimated, has been de-
monstrated by computer simulations.
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