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Heartbeat Classification Using Feature Selection
driven by Database Generalization Criteria

Mariano Llamedo, Juan Pablo Martínez

Abstract—In this work we studied and validated a simple
heartbeat classifier based on ECG feature models selected
with the focus on an improved generalization capability. We
considered features from the RR series, as well as features
computed from the ECG samples and different scales of the
wavelet transform, at both available leads. The classification
performance and generalization were studied using publicly
available databases: the MIT-BIH Arrhythmia, the MIT-BIH
Supraventricular Arrhythmia and the St. Petersburg Institute
of Cardiological Technics (INCART) databases. The Association
for the Advancement of Medical Instrumentation (AAMI) rec-
ommendations for class labeling and results presentation were
followed. A floating feature selection algorithm was used to obtain
the best performing and generalizing models in the training and
validation sets for different search configurations. The best model
found comprehends 8 features, was trained in a partition of the
MIT-BIH Arrhythmia, and was evaluated in a completely disjoint
partition of the same database. The results obtained were: global
accuracy of 93%; for normal beats, sensitivity (S) 95%, positive
predictive value (P+) 98%; for supraventricular beats, S 77%,
P+ 39%; for ventricular beats S 81%, P+ 87%. In order to test
the generalization capability, performance was also evaluated in
the INCART, with results comparable to those obtained in the
test set. This classifier model has fewer features and performs
better than other state of the art methods with results suggesting
better generalization capability.

Index Terms—Heartbeat classification, Feature selection, Lin-
ear classifier, Wavelet Transform.

I. INTRODUCTION

THE analysis of the electrocardiographic signal (ECG)
provides a noninvasive and inexpensive technique to

analyze the heart function for different cardiac conditions. In
the last decades, the computerized analysis of the ECG became
a well-established practice, and many improvements were
achieved to aid cardiologists in the task of analyzing long-
term ECG recordings. One important analysis performed in the
ECG is the classification of heartbeats, which is important for
the study of arrhythmias. Arrhythmias are understood as any
disturbance in the rate, regularity, site of origin or conduction
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of the electrical impulses through the heart [1]. While some
types of arrhythmias represent a life threat in the very short
term (e.g. ventricular fibrillation), there are other types that
appear less frequently and represent a long-term threat without
proper treatment. It is in those later cases, which require
carefully inspection of long term ECG recordings, where the
use of automatic algorithms represents an important help for
the diagnostic.

Many algorithms for ECG classification were developed
in the last decade [2]–[11], but only few of them have
completely comparable methodologies and therefore results
[4], [8], [10]. The Association for the Advancement of Med-
ical Instrumentation (AAMI) recommendations [12] for class
labeling and results presentation have eased this problem,
and at the present time it is broadly accepted [4], [5], [8]–
[11]. From the different classification approaches presented
in those articles, some of them classify beats without any
local expert (LE) assistance [2]–[4], [8], [10], but others take
advantage from a LE to improve the classification performance
[2], [3], [7], [8]. Regarding to the classes of interest, the
AAMI recommendation suggests 5 classes: supraventricular
(S), ventricular (V), fusion (F), beats that cannot be classified
(Q), and normal (N) [12]. It is remarkable that all previous
works were interested in discriminating between N and V
classes, but only few of these works studied the multiclass
classification problem [3], [4], [8], [10]. In terms of the data
division, some works performed a beat-oriented division no
matter which subject the heartbeats belong to, so that both
the training and testing datasets contain heartbeats from the
same subjects [5], [9], [11]. It was shown in [4] that this
approach leads to an optimistic bias of the results, being more
advisable a patient-oriented division, as it will also happen in
the application scenario where the algorithm is to be used.

Concerning the features used for classification (classifica-
tion model), the surrounding RR intervals were considered in
almost all published works. Other choices were the decimated
ECG samples (mostly from the QRS complex or T wave) [4],
or transformed by Hermite polynomials [3] or wavelet de-
composition (WT) [8]. Some works use features that integrate
information present in both leads, like the vectocardiogram
maximal vector (V CGM ) and angle (V CGφ) [6]. Another
multilead strategy can be seen in [4], where a final decision
is taken from several posterior probabilities calculated from
single-lead features. In the same work, features derived from
the delineation of the ECG, like the QRS complex and T
wave duration, proved to be useful for classification. In some
works where the dimensionality of the problem was an issue,
feature transformations like principal components analysis
(PCA) were used to keep the dimension of the model as
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low as possible [11]. However, none of the reviewed articles
considered the use of a feature selection algorithm to retain
the most relevant features.

Several classifiers were adopted in the reviewed articles,
from simple linear discriminant functions based on the Gaus-
sian assumption of the data [4], [8] to more elaborated ones,
as artificial neural networks (ANN’s), self organizing maps
(SOM) and learning vector quantization (LVQ) among others
[2], [3], [5], [6], [9]–[11].

The database used without exception by all groups was the
MIT-BIH arrhythmia database (MIT-BIH-AR) [13] for training
and testing purposes. None of the reviewed articles reported
the generalization properties of the proposed algorithms out-
side the MIT-BIH-AR database.

The objective of this work is to develop and evaluate a
heartbeat classification algorithm according to the following
conditions:
• Perform fully automatic ECG classification (without LE

intervention)
• Follow AAMI recommendations for class labeling and

results presentation
• Use a simple classifier (as linear or quadratic discriminant

functions) to ensure that the classification performance is
due to the features selected.

• Features should have a physiological meaning, being
simple to compute and robust to the typical kind of noise
present in the ECG

• Use a multidatabase validation approach for feature se-
lection to ensure better generalization properties of the
selected feature set.

II. METHODOLOGY

A. ECG Databases

In this work we used the well-known MIT-BIH Arrhythmia
database (MIT-BIH-AR) [13] for training and testing pur-
poses. Additionally, the MIT-BIH Supraventricular Arrhythmia
database (MIT-BIH-SUP) [14] and the St. Petersburg Institute
of Cardiological Technics (INCART) database were used for
evaluation and testing purposes, in order to assess the general-
ization achieved by the classification models developed in the
MIT-BIH-AR. All databases are freely available on Physionet
[15] and their details are summarized below.

1) MIT-BIH Arrhythmia Database (MIT-BIH-AR): The
database consists of 48 two-lead recordings of approximately
30 minutes and sampled at 360 Hz. The first 23 recordings
were extracted from routine ambulatory practice while the
remaining 25 were selected because of the presence of less
common complex ventricular, junctional and supraventricular
arrhythmias. The two recorded leads are not the same in
all recordings, depending on the arrhythmia and physical
limitation of the subject’s body. The annotations provided
with the database were used for training and testing purposes,
following the recommendations and class-labeling of AAMI
(Section 4.2 in [12], Table I in [4]). We adopted the training
(DS1) and test (DS2) set division scheme used in [4] for
comparative purposes of the results. The four recordings with
paced beats were discarded in this work in accordance with

AAMI [12]. The AAMI Q class (unclassified and paced
heartbeats) was discarded since it is marginally represented
in the database. This limitation occurs to a lesser extent with
the fusion (F) AAMI class, but instead of discarding the
heartbeats of this class, a class-labeling modification to the
AAMI recommendation is proposed here and was adopted. It
consists in merging fusion (of normal and ventricular beats)
and ventricular classes, as the same ventricular class (V’). We
will refer to this modification as AAMI2 labeling. The division
scheme is summarized in Table I.

2) MIT-BIH Supraventricular Arrhythmia Database (MIT-
BIH-SUP): The database consists of 78 two-lead recordings of
approximately 30 minutes and sampled at 128 Hz. The record-
ings were chosen to supplement the examples of supraven-
tricular arrhythmias in the MIT-BIH Arrhythmia Database.
The annotations of the recordings were first automatically
performed, by the Marquette Electronics 8000 holter scanner
and later reviewed and corrected by a medical student [16].
The original labeling was also adapted to the AAMI recom-
mendations and to the AAMI2 modification. This database will
be considered for validation and model selection purposes. The
class distribution is shown in Table I.

3) St. Petersburg Institute of Cardiological Technics (IN-
CART) 12-lead Arrhythmia Database: This database consists
of 75 annotated recordings extracted from 32 Holter records.
Each record is 30 minutes long and contains 12 standard leads,
each sampled at 257 Hz. The annotations were produced by an
automatic algorithm and then corrected manually, containing
over 175000 beat annotations in all. The original records
were collected from patients undergoing tests for coronary
artery disease (17 men and 15 women, aged 18-80; mean
age: 58). None of the patients had pacemakers; most had
ventricular ectopic beats. In selecting records to be included
in the database, preference was given to subjects with ECG’s
consistent with ischemia, coronary artery disease, conduction
abnormalities, and arrhythmias. From the 12 standard leads,
the two more frequent leads in the MIT-BIH-AR database (lead
II and V1) were selected to perform the experiments presented
in this work. This database will be considered only for testing
purposes. More details about the database are shown in Table
I.

B. Signal Processing

The ECG recordings of the MIT-BIH-SUP and INCART
databases were first resampled to 360 Hz, which is the
sampling frequency of the MIT-BIH-AR. This was performed
with a tenth order lowpass FIR filter without observing any
notorious distortion (resample function, Signal Processing
Toolbox of Matlab, The Mathworks Inc., Massachusetts). All
recordings in all databases were first preprocessed to remove
artifacts as described in [4]. No energy or amplitude normal-
ization was done, as we were interested in some amplitude-
related features.

1) Wavelet Transform : Many of the considered features
(explained in following subsections) were based on the wavelet
transform (WT) of the ECG signal. The WT is defined for a
continuous signal s(t) as
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Table I
CLASS DISTRIBUTION OF THE DATABASES USED AND DIVISION OF THE MIT-BIH-AR DATABASE INTO TRAINING (DS1) AND TESTING (DS2) SETS.

RECORDINGS WITH PACED BEATS WERE EXCLUDED.

MIT-BIH-AR
Dataset Purpose N S V F Q #Rec
DS1 train 45784 940 3783 413 8 22
DS2 test 44188 1835 3218 388 7 22
Totals 89972 2775 7001 801 15 44

Other Databases
Database Purpose N S V F Q #Rec

MIT-BIH-SUP validation 161902 12083 9897 193 78 78
INCART test 153517 1958 19991 219 5 75

Dataset MIT-BIH-AR recordings
DS1 101, 106, 108, 109, 112, 114, 115, 116, 118, 119, 122, 124, 201, 203, 205, 207, 208, 209, 215, 220, 223, 230
DS2 100, 103, 105, 111, 113, 117, 121, 123, 200, 202, 210, 212, 213, 214, 219, 221, 222, 228, 231, 232, 233, 234

Heartbeat classes are N: normal, S: supraventricular, V: ventricular and F: fusion

Wss(b) =
1√
s

∫ +∞

−∞
s(t)ψ

(
t− b
s

)
dt, s > 0. (1)

This transformation maps the ECG signal into a time-scale
plane (understanding scale as a surrogate of frequency). The
responsible of the mapping is the prototype wavelet function
ψ(t), affected by both scaling and translation parameters s
and b respectively. The wavelet transform allows to locate
details or fast transitions when scale parameter s is small, and
coarser aspects or trends for higher values. The translation
parameter b indicates the location of these finer or coarser
details. As this continuous representation is computationally
unfeasible, a typical choice is to discretize the time-scale
map using a dyadic sampling where s = 2k and b = 2kl
for k, l ∈ Z, resulting the discrete WT or DWT. By using
this restriction, lower scales have greater sampling frequency
than higher scales. But as in our application we are interested
in keeping the time accuracy as high as possible (at the
expense of redundancy), we relax the restriction to b = l
for l ∈ Z, resulting in a time-scale plane with the same
sampling rate at each scale (Algorithme à trous). It is worth
to mention that the DWT can be efficiently implemented as a
filter bank. We used the derivative of a smoothing function
(quadratic spline) as the prototype wavelet ψ(t), resulting
the different scales of the DWT as a smoothed derivative of
the ECG. As a result, the DWT retains at certain scales the
useful information present in the ECG in form of absolute
maxima and zero-crossings (as we will see later in Fig. 2). For
background and implementation details the interested reader
is referred to [17] for a more detailed description of the WT
and its implementation for ECG delineation. Following the
conclusions of [17], the resulting DWT framework allows an
analysis robust to the typical interferences present in routine
ECG recordings, so the features derived from the DWT are
expected to inherit this desirable property.

2) ECG Delineation: As our objective is the evaluation
of a heartbeat classifier, the QRS location is assumed to be
known and we use the annotations included in the databases.
Following the QRS complex detection positions, the delin-
eation of each heartbeat was performed with the delineator
described in [17]. Both the delineation result and the DWT
of the ECG signals (which are intermediate signals for the
delineator) were used to calculate some features described in
the following subsections.

C. Classification Features

Following the conclusions of previous works [2], [4], we in-
cluded in our model both interval and morphological features.
As interval features we used features from the RR sequence
RR[i−1], RR[i] and RR[i+1] to describe the local time evolu-
tion of the heart rhythm. In order to assess the local variation of
the heart rhythm, the feature RRV [i] =

∑1
j=−1 |dRR[i− j]|

(being dRR[i] = RR[i]−RR[i−1]) characterizes the variation
in the surrounding heartbeats. We also included estimates of
the local and global rhythm by the mean RR interval in the
last 1, 5, 10 and 20 minutes (RRP being P ∈ {1, 5, 10, 20},
the interval in minutes of aggregation).

The morphological features used can be grouped in three
categories depending on whether they were calculated in
the ECG signal, the two-dimensional vectocardiogram (VCG)
loop formed by both available leads or in the DWT of the
ECG signal.

1) The QRS width (QRSW = QRSoff − QRSon) is
obtained from the delineation of the ECG.

2) From the 2-D VCG loop constructed with the two
available leads we calculated two features: the maximal vector
of the QRS loop (V CGM ) and the angle of this vector
(V CGφ) as shown in Fig. 1.

3) Regarding the features calculated from the DWT of the
ECG, three types can be defined:

3.a) The first type includes 7 features (per lead) that were
calculated from peak amplitudes and positions from the fourth
scale of the DWT (W4s(l)), since this scale (between 12.25–
22.5 Hz) has good projection of the ECG information. These 7
features are the 2 greatest absolute values of the QRS complex,
the 2 greatest absolute values of the T wave, and their 3 relative
positions (to the position of the greatest peak in the heartbeat,
see Fig. 2).

3.b) The second type is also calculated from the fourth
scale of the DWT. The autocorrelation signal for both leads
(rx(k) and ry(k)) and the inter-lead cross-correlation signal
(rxy(k)) were calculated within a time window which starts
130 ms before the fiducial point and ends 200 ms after.
One remarkable aspect is that features calculated from the
correlation signals will essentially be synchronized in time,
even if the fiducial point is not accurately determined. We
calculated for the 3 signals the location and value of the
absolute maximum, and for rx and ry the location of the first
zero-crossing, as shown in Fig. 3.

3.c) The feature is the wavelet scale where the QRS complex
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is centered for each lead, since fast evolving signals (like
a normal beat) tend to be centered in lower wavelet scales
(higher frequency content). The QRS center scale for each
lead (SLead

QRS ) is calculated as the weighted sum

SLQRS =

∑6
s=1A

L
s .s∑6

s=1A
L
s

(2)

where ALs is the mean absolute amplitude of the QRS peaks
at scale s of the DWT, and lead L

ALs =
1

D

D∑
d=1

∣∣WL
s s(ld)

∣∣ , s = 1, 2, . . . 6 (3)

being D the number of detected peaks (1 or 2) and ld the
positions of the peaks.

Figure 1. Illustration of the features calculated from the VCG loop computed
with the two available leads, for a normal (continuous line) and ventricular
(dotted line) beats. The maximum value of the loop and the angle at this point
are shown.

D. Discriminant Functions

Under the assumption of normally distributed data, the
maximum a posteriori classification criterion (MAP) leads
to quadratic discriminant functions, broadly used for clas-
sification purposes [18]. In the general case, the quadratic
discriminant function of the i-th class and feature vector x,
can be written as

gi(x) = −1

2
xTΣ−1i x + µT

i Σ−1i x− 1

2
µTi Σ−1i µi

−1

2
log(|Σi|) + log(P (ωi)), (4)

being µi, Σi and P (ωi) the mean vector, covariance matrix
and prior probability of the i-th class. The classification rule
assigns x to the class i which results in the maximum posterior
probability gi(x). The values of µi and Σi were computed

Figure 2. Illustration of the features calculated from the wavelet transform
for the same normal and ventricular beat in Fig. 1. The two most important
peaks from the QRS complex and T wave are indicated with an asterisk, and
the relative distances (di) to the most important peak in the fourth scale. Also
the scale where the QRS complex is centered (SL

QRS ) is shown for both types
of heartbeats used for its calculation (only for one lead).

Figure 3. Illustration of the features calculated from the wavelet correlation
signals for the same normal and ventricular beats. The autocorrelation signal
of the QRS complex at scale 4 is shown for both leads (rx and ry) as well
as the cross-correlation signal (rxy) at the bottom. The zero-crossings and
peaks of interest are indicated with an asterisk.

from the training data with the sample mean and covariance
matrix expressions

µi =
1

Mi

Mi∑
m=1

xm (5)
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Σi =
1

Mi − 1

Mi∑
m=1

(xm − µi).(xm − µi)
T (6)

being Mi the number of examples (xm) of the i-th class. The
values for the prior probabilities P (ωi) were considered the
same for all classes. In the case that the covariance matrix Σ is
considered to be the same for all classes (Σi = Σj = Σ,∀i 6=
j), the quadratic discriminant classifier (QDC) becomes linear
in x leading to the linear discriminant classifier (LDC)

gi(x) = µT
i Σ−1x− 1

2
µTi Σ−1µi + log(P (ωi)), (7)

where Σ can be estimated as the weighted sample covariance

Σ =

∑C
i=1 wi

∑Mi

m=1(xm − µi).(xm − µi)
T∑C

i=1 wi.Mi

, (8)

being C the total amount of classes and wi the weighting co-
efficients. This class-weighting possibility is of much interest
due to the heavy imbalance of the class-sizes inherent to this
application, where the normal class is in general one order of
magnitude (at least) more represented that other classes. We
refer as LDC to the linear classifier where wi = wj ,∀i 6= j,
any other weight scheme will be referred as compensated
linear classifier (LDC-C). In this work, all classification tasks
were performed using and modifying the PRtools toolbox [19]
for Matlab (The Mathworks Inc., Massachusetts).

E. Handling of Feature Domains

As the features to be included in our model belong to
diverse domains, like R, R+and S2 (angular or directional
domain) we have to transform or deal with them in order
to perform classification tasks. In our case, we assume that
each feature is normally distributed and therefore valid in the
R domain. According to this, all interval and morphological
features defined in R+should first being transformed to the R
domain by a (natural) logarithm operation. In contrast, circular
(or S2) features require a special treatment that will be briefly
described. The interested reader is referred to [20] for more
details. For a directional feature ϑ the mean direction and
directional variance , counterparts of the regular mean and
variance are defined as [20]

µcϑ = arg(z) (9)

V cϑ = 1− |z| (10)

where z = E[ejϑ]. Then for a multivariate F -dimensional
model, where Θ is the set of indexes of the directional features,
the mean vector µi and covariance matrix Σi are

µi = [µi(1) . . . µi(F )]
T
, (11)

with

µi(f) =

{
1
Mi

∑Mi

m=1 xm(f) if f /∈ Θ

arg
(

1
Mi

∑Mi

m=1 e
jxm(f)

)
if f ∈ Θ

(12)

and

Σi =
1

Mi − 1

Mi∑
m=1

x
′

m.x
′

m
T (13)

being

x
′

m =
[
x

′

m(1) . . . x
′

m(F )
]T

(14)

x
′

f (m) =

{
xm(f)− µi(f) if f /∈ Θ
(xm(f)− µi(f))mod 2π if f ∈ Θ

(15)

As it can be noted from equation 13, Σi can be easily
calculated from the directional mean µi and the raw data.

F. Outlier Removal for Model Parameter Estimation

The classification performance proposed strongly depends
on the parameter estimation of the multidimensional Gaus-
sians in the training datasets. The parameter estimation (or
training) process can be severely disrupted by the presence
of outliers. This problem can be addressed by the removal
of these atypical observations in the training data prior to the
parameter estimation process. In this work the outliers removal
is performed by the algorithm described in [21], which is a
projection pursuit method based on the robust estimation of
the translation, scale and kurtosis of the distribution. For the
i-th class, the centroid is estimated as the median, defined for
F dimensional data as

med
m

xm = med(x1, . . . ,xMi
) = arg min

µ∈RF

Mi∑
m=1

‖xm − µ‖

(16)
while the dispersion is estimated as the median absolute
deviation (MAD), calculated as

DMAD(x1, . . . ,xMi
) = 1.4826 ·med

m

∣∣∣∣xm −med
j

xj

∣∣∣∣ (17)

and finally the kurtosis is estimated as

κ(x1, . . . ,xMi) =

∣∣∣∣∣ 1

Mi

Mi∑
m=1

(xm −med(x1, . . . ,xMi
))

DMAD(x1, . . . ,xMi)
4

4

− 3

∣∣∣∣∣ .
(18)

The presence of outliers will make the tails of a distri-
bution heavier, increasing the kurtosis coefficient; while a
large number of outliers give raise to other modes in the
distribution, decreasing the kurtosis coefficient. In a first phase,
the algorithm search for outliers in the directions where the
kurtosis of the data is large or small to find location outliers.
Then in a second phase, the directions of large variance are
explored to address scatter outliers [21]. For both phases each
example in the distribution gets one weight, which are finally
combined in a final decision weight. Based on the final weight,
the data is sorted and the 5% of the most outlying examples
are discarded as outliers. With this assumption of slightly
contaminated data, we set an operating point for the trade-
off between discarding useful data and allowing the presence
of outliers in the parameter estimation process.
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G. Performance Evaluation

The performance was measured in terms of the class sen-
sitivity (Si) and class positive predictive value (P+

i ); and the
global accuracy (A), global sensitivity (S) and global positive
predictive value (P+) as suggested in [12] for both, training
and testing datasets. In a multiclass classification problem the
confusion matrix shows the outcome achieved by a classifier
and a detailed distribution of the misclassified events. For a
C class problem the confusion matrix is a square matrix of
dimension C

Estimated classes

Tr
ue

cl
as

se
s

1 . . . i . . . C
1
...
i
...
C


nT11 . . . nF1i . . . nF1C

...
. . .

...
nFi1 . . . nTii . . . nFiC

...
...

. . .
nFC1 . . . nFCi . . . nTCC


N1

...
Ni
...
NC

P1 . . . Pi . . . PC NT

For the i-th class nTii is the number of correctly classified
examples and nFij is the number of examples of class i
classified as class j; Ni is the total number of examples for
class i, Pi is the number of examples classified as class i and
NT is the total number of examples in the dataset.

Ni = nTii +
∑
m6=i

nFim

Pi = nTii +
∑
m 6=i

nFmi

NT =

C∑
i=1

Ni =

C∑
i=1

Pi

Then Si and P+
i for the i-th class are defined as

Si =
nTii
Ni

(19)

P+
i =

nTii
Pi

(20)

And the global accuracy (A), sensitivity (S) and positive
predictive value (P+) are calculated as

A =
1

NT

C∑
i=1

nTii =

C∑
i=1

Ni
NT

Si (21)

S =
1

C

C∑
i=1

Si (22)

P+ =
1

C

C∑
i=1

P+
i (23)

From this equations it is clear that any imbalance in the
class representation directly impacts over the P+, P+

i and A
calculation, but not over the S and Si.

Although the AAMI recommendation does not suggest any
measure to deal with the strong class size imbalance (see

Table I), we considered weighting the classes previous to
the calculation of P+

i and A in order not to neglect the
performance of the less represented classes. The balancing
approach used in this work consists in multiplying each row of
the confusion matrix by a constant such that the sum of each
row Ni is equal for all classes, or Ni = Nj ,∀i 6= j . This is
equivalent to repeat examples of the less represented classes, in
order to balance the class presence. We will refer to this as the
balanced performance estimation method in the results section.
We also use another way of showing the global performance
referred as “by recording”, which consists in averaging the
performance estimates in a record-by-record (or subject) way.

H. Model Selection and Dimensionality Reduction

It is well known that low dimensional models generalize
better to examples not presented during the training phase,
resulting in a more robust and realistic classifier [18]. In order
to obtain a small and well performing model, a sequential
floating feature selection algorithm (SFFS) was used [22]. The
SFFS algorithm can be briefly explained as the combination
of two simpler steps, a sequential forward selection (SFS)
algorithm followed by a sequential backwards selection (SBS)
algorithm. The SFFS iterates for all model sizes, starting from
a single feature model, and registering the best performances
found for each model size. Each iteration starts with an SFS
step, and from a model size greater than two features after
each SFS step, an SBS step is repeated until the performance
of the model found is not greater than the registered for this
smaller model size. This way the algorithm goes forward
and backwards (like floating) searching at each step for the
path of maximum performance. The algorithm ends when
the specified greater model size is reached. The result of the
algorithm is the model found with maximum performance. The
interested reader is referred to [22] for a detailed description
and to [19] for an implementation of the SFFS algorithm. The
performance metrics used by the feature selection algorithm
were a weighted class S and P+, calculated as

JS =

∑C
i=1 πi.Si∑C
i=1 πi

(24)

JP+ =

∑C
i=1 πi.P

+
i∑C

i=1 πi
(25)

with C classes and being Si and P+
i the class sensitivities

and positive predictive defined in the previous subsection. The
class weights πi allow the possibility of directing the search
to specific class performances.

I. Experiment Setup

In this work we are interested in finding a reduced-
dimension, well performing and generalizing model in a
multidatabase context. The experiment can be divided in three
steps:

1) In the first step we search for the best performing model,
from the 39 available features, in the training (DS1 of MIT-
BIH-AR) and validation (MIT-BIH-SUP) sets (Fig. 4a). In
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each iteration of the SFFS algorithm, the current model was
trained in DS1 of MIT-BIH-AR and its performance was
evaluated in the MIT-BIH-SUP database. As the data divisions
in both databases do not share any recording, the features
selected should retain the generalization properties. Several
parameter configurations were studied for the SFFS algorithm,
like the effect of the classifier (LDC, LDC-C and QDC)
and the optimization criterion (JS or JP+ ) for the search.
The weight compensation used in the experiments for the
LDC classifier is wN = 1, wS = 10 and wV = 10. The
same weights were also studied for the JP+ and JS criterion,
πN = 1, πS = 10 and πV = 10. At the end of this step we
have an optimal feature set for each parameter configuration.

2) The second step (Fig. 4b) is the selection of the best
performing model, among the best models obtained in the
previous step for each parameter configurations. For that
purpose, we compare the global results (A, S, P+) obtained
in the union set of DS1 of MIT-BIH-AR dataset and the
MIT-BIH-SUP database, using a recording-based k-fold cross
validation with k = 10 recordings.

3) Finally the performance of the selected model is eval-
uated in DS2 for comparison with [4], as shown in Fig.
4c. Additionally the performance in the INCART database is
compared to that obtained in DS2 to asses how the model
behaves in completely different databases.

The results presented in this work are compared to the
classifier developed in [4] (reference classifier in the rest of this
work), being this, to our knowledge, the best performing fully
automatic multiclass classifier (AAMI compliant) reviewed in
the literature. In order to perform a fair comparison, some
methodological aspects were maintained as similar as possible.
The implementation of the classifier suggested in [4] was con-
trasted with the reported results obtaining comparable results.
With this implementation, we could evaluate the generalization
capability of the reference classifier in the MIT-BIH-SUP
database, since this experiment was not performed in [4]. In
those situations where the experiments were already performed
in [4], the reported results were used.

All experiments described in this work will focus to achieve
automatic classification between the three AAMI2 classes (N,
S and V’), since the fusion class is poorly represented in the
databases used. The restrictions imposed by the recording-
oriented division of the data, and the fact that only a few
recordings concentrate the majority of the examples of the
fusion heartbeats, makes unfeasible to perform the feature
selection using the original AAMI labeling. Despite this limi-
tation for the model selection, the model obtained for the three
AAMI2 classes was also retrained and evaluated classifying
the four AAMI classes to show its utility.

III. RESULTS

The main results for the experiments described in the
previous section are summarized in tables II and III. Table II
shows the results of the best models obtained for the different
parameter configurations during the model selection. The best
performing of these models was an 8 feature model trained
in the DS1 of the MIT-BIH-AR. The 8 features that the

Figure 4. Block diagram describing the experiments performed in this work.
In panel a the feature selection algorithm is summarized, indicating the train
and validation dataset division, as well as the different parameters of the
algorithm. In panel b is shown the methodology to obtain the best performing
model among the different searches performed. Finally in panel c, the best
performing model is selected for the final performance evaluation in the test
datasets.

model comprehends are listed in Table IV. The classifier used
was an LDC-C, using equal prior probabilities P (ωi). The
optimization criterion used in the SFFS was JP+ with equal
weights πi.

The performance of the selected model in the test set (DS2)
is compared with the reported by de Chazal et al [4] in Table
III. The model found in this work achieves better performance
for the three classes. The Table V presents the performance
by recording in the test set, following the recommendations of
the AAMI [12] for result presentation.

The performance of the selected model with the four AAMI
classes (N, S, V, F) is reported in Table VI. The model found
achieves a performance slightly lower than the reference, but
it must be noted that the selected model was optimized for the
three AAMI2 classes (N, S, V’).

Finally the performance of the model found in the INCART
database is presented in Table VII. The performance obtained
in this database is comparable for all classes with that obtained
in DS2.

Table IV
FEATURES USED IN THE MODEL SELECTED IN TABLE II FOR THE FINAL

PERFORMANCE EVALUATION.

Feature Description
ln(RR[i]) Current RR interval

ln(RR[i+ 1]) Next RR interval
ln(RR1) Average RR interval in the last minute
ln(RR20) Average RR interval in the last 20 minutes

kxZ Zero-cross position of the WT autocorrelation signal in lead 1
kyZ Zero-cross position of the WT autocorrelation signal in lead 2
kxM Maximum position of the WT autocorrelation signal in lead 1
kyM Maximum position of the WT autocorrelation signal in lead 2

IV. DISCUSSION AND CONCLUSIONS

In this work we have presented a methodology to develop
a simple and robust heartbeat classification system, and we
evaluated it focusing in the generalization capability. In order
to do this, we take into consideration the MIT-BIH-SUP [14]
and the INCART databases in addition to the widely-used
MIT-BIH-AR, all freely available in Physionet [15]. Although
these databases are bigger than the original MIT-BIH-AR, the
fusion class defined in the AAMI standard [12] is not so well
represented as the other classes. This limitation is overcome
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Table II
SUMMARY OF THE BEST PERFORMING MODELS FOUND WITH THE SFFS ALGORITHM SEPARATING ALL AAMI2 CLASSES. IN THE LEFT THE

PARAMETERS USED FOR THE SFFS TO FIND THE MODEL, AND IN THE RIGHT THE PERFORMANCE ESTIMATED FOR THE DATASET COMPOSED BY DS1 OF
THE MIT-BIH-AR AND THE WHOLE MIT-BIH-SUP DATABASE (WITH CROSS-VALIDATION OF K=10 RECORDINGS). THE BEST PERFORMING MODEL (IN

BOLD) IS SELECTED FOR THE FINAL PERFORMANCE EVALUATION. THE RESULTS ARE EXPRESSED IN PERCENTAGES.

Model Evaluation
Opt. Normal Suprav. Ventr. Total

Classifier Crit. # Features S P+ S P+ S P+ A S P+

LDC-C JP+ 8 93 98 78 40 68 70 91 80 70
LDC JP+ 10 92 98 57 38 77 50 89 75 62
QDC JP+ 7 80 98 7 12 89 22 77 59 44

LDC-C JS 10 90 98 77 33 68 74 88 79 68
LDC JS 10 92 98 74 37 70 67 89 78 67
QDC JS 9 87 98 43 32 80 33 84 70 55

de Chazal et al. [4] 48 87 98 57 30 63 36 84 69 55

Table III
PERFORMANCE COMPARISON BETWEEN THE MODEL SELECTED IN TABLE II AND THE REFERENCE CLASSIFIER [4] SEPARATING ALL AAMI2 CLASSES IN
DS2 OF MIT-BIH-AR. BOTH MODELS WERE TRAINED IN DS1 OF THE SAME DATABASE. FIRST THE CONFUSION MATRICES FOR BOTH MODELS ARE
SHOWN, AND BELOW THE CLASS AND TOTAL PERFORMANCES ARE SUMMARIZED. THE PERFORMANCES ARE EXPRESSED IN PERCENTAGES FOR BOTH,

BALANCED AND IMBALANCED CLASS PRESENCE IN THE DATASET.

Tr
ut

h

de Chazal et al. [4]
Algorithm

n s v’ Total
N 40718 1863 1677 44258
S 307 1361 169 1837
V’ 235 845 2529 3609

Total 41260 4069 4375 49704

Tr
ut

h

Model selected in Table II
Algorithm

n s v’ Total
N 41950 2002 236 44188
S 216 1422 197 1835
V’ 473 222 2911 3606

Total 42639 3646 3344 49629

Performance Normal Suprav. Ventr. Total
calculation mode Classifier Automatic # Features S P+ S P+ S P+ A S P+

Imbalanced
This work yes 8 95 98 77 39 81 87 93 84 75

de Chazal et al. [4] yes 48 92 99 74 33 70 58 90 79 63
de Chazal et al. [7] no 48 94 99 88 47 95 82 94 92 76

Balanced This work yes 8 95 79 77 88 81 88 84 84 85
de Chazal et al. [4] yes 48 92 80 74 73 70 84 79 79 79

by adopting the alternative labeling AAMI2 proposed in this
work. The AAMI2 labeling make sense from a physiological
point of view, since the AAMI fusion class comprehends those
heartbeats which results from the simultaneous occurrence of
normal and ventricular heartbeats.

From the results obtained for the model selection presented
in Table II, several models that outperform the reference
classifier [4] were achieved. The best model found consists
of 8 features: ln(RR[i]), ln(RR[i+ 1]), ln(RR1), ln(RR20),
kxZ , kyZ , kxM and kyM ; which are described in Table IV. As
can be noted, the selected features are computed without
exception from time interval measurements. This could be
explained given that the used databases do not always include
the same pair of ECG leads in each recording. Therefore the
classification performances of features which are calculated
from amplitudes are heavily degraded. The directional features
(like the V CGφ) were also probably affected by this fact,
even if the clinical importance of this kind of features is
well-known by cardiologists [1]. In contrast, intervals seem
to retain the classification ability with independence of the
pair of leads chosen. The first four features in the model
are clearly connected to the evolution of heart rhythm, while
the other four can be understood as surrogate measurements
of the QRS width, and therefore the QRS morphology. As
a result, the model found has the evident advantage of a
lower size, which results in a computational saving and lower

error in the parameter estimation during the training phase. In
addition, it only relies on the QRS fiducial point detection,
making the classifier model robust to degraded signals where
the delineation of the ECG waves is not reliable.

It is worth to note than the performance achieved by the
reference classifier [4] in the union of train and validation
dataset (Table II) is lower for all classes than the obtained
in the final performance reported in Table III. The same
phenomenon happens with the suggested model in a smaller
degree, with the exception of the supraventricular perfor-
mance. This phenomenon was also reported in [4], obtaining
better performance in the test set than in the training set.
These results suggest that DS2 dataset may not be a good data
sample to measure the actual performance of a classifier. To
avoid this bias in the actual performance, it may be convenient
in future works that the final performance estimation would
be performed applying other methodologies or redefining the
test dataset. One reason that could be biasing the results in
DS2 is the different amount of examples by recording for the
supraventricular class. As can be seen in Table V, recordings
232 and 222 concentrate the majority of the examples for
the supraventricular class, which means that failing in these
recordings impacts considerably to the S class performance.
For this reason, the average performances presented in Table
V could also be of importance since each recording or subject
is equally weighted in the average.
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Table V
DETAILED RESULTS GROUPING BY RECORDING (OR SUBJECT), FOR THE MODEL SELECTED IN TABLE II SEPARATING ALL AAMI2 CLASSES IN DS2 OF

MIT-BIH-AR, FOLLOWING AAMI RECOMMENDED PERFORMANCE MEASURES.

Number of beats Normal Supraventr. Ventricular Totals
Rec N S V’ S P+ S P+ S P+ A S P+

100 2235 33 1 100% 77% 70% 100% 100% 100% 100% 90% 92%
103 2079 2 0 99% 50% 0% 0% – – 99% 50% 25%
105 2524 0 41 97% 100% – – 51% 94% 96% 74% 97%
111 2120 0 1 99% 100% – – 100% 99% 99% 100% 100%
113 1785 6 0 99% 100% 100% 99% – – 99% 100% 100%
117 1531 1 0 100% 100% 100% 100% – – 100% 100% 100%
121 1858 1 1 99% 100% 100% 99% 100% 100% 99% 100% 100%
123 1512 0 3 100% 100% – – 0% 0% 100% 50% 50%
200 1733 30 826 96% 58% 27% 81% 92% 91% 94% 72% 77%
202 2059 55 20 67% 87% 93% 56% 50% 87% 68% 70% 77%
210 2419 22 205 94% 86% 91% 81% 69% 87% 92% 85% 85%
212 2745 0 0 100% 100% – – – – 100% 100% 100%
213 2637 28 582 100% 63% 46% 100% 44% 47% 89% 63% 70%
214 2000 0 257 97% 100% – – 94% 98% 97% 96% 99%
219 2080 7 65 86% 46% 0% 0% 82% 100% 86% 56% 49%
221 2029 0 396 93% 99% – – 99% 100% 94% 96% 100%
222 2271 208 0 72% 92% 89% 76% – – 73% 81% 84%
228 1685 3 362 100% 60% 33% 84% 93% 100% 99% 75% 81%
231 1565 1 2 98% 49% 0% 0% 50% 100% 97% 49% 50%
232 397 1381 0 100% 90% 78% 100% – – 83% 89% 95%
233 2227 7 841 100% 92% 71% 90% 83% 74% 95% 85% 85%
234 2697 50 3 100% 78% 72% 100% 100% 100% 99% 91% 93%

Total 44188 1835 3606 95% 83% 61% 73% 75% 86% 94% 80% 82%

Table VI
PERFORMANCE COMPARISON BETWEEN THE MODEL SELECTED IN TABLE II AND THE REFERENCE CLASSIFIER [4] SEPARATING ALL AAMI CLASSES IN
DS2 OF MIT-BIH-AR. BOTH MODELS WERE TRAINED IN DS1 OF THE SAME DATABASE. FIRST THE CONFUSION MATRICES FOR BOTH MODELS ARE

SHOWN, AND BELOW THE CLASSES AND TOTAL PERFORMANCES ARE SUMMARIZED. THE PERFORMANCES ARE EXPRESSED IN PERCENTAGES FOR BOTH,
BALANCED AND IMBALANCED CLASS PRESENCE IN THE DATASET.

Tr
ut

h

de Chazal et al. [4]
Algorithm

f n s v Total
F 347 33 1 7 388
N 3509 38444 1904 303 44160
S 16 173 1395 252 1836
V 176 117 321 2504 3118

Total 4048 38767 3621 3066 49502

Tr
ut

h

Model selected in Table II
Algorithm

f n s v Total
F 370 11 2 5 388
N 8031 34270 1807 80 44188
S 28 124 1403 280 1835
V 321 46 182 2669 3218

Total 8750 34451 3394 3034 49629

Performance Fusion Normal Suprav. Ventr. Total
calculation mode Classifier S P+ S P+ S P+ S P+ A S P+

Imbalanced This work 95 4 78 99 76 41 83 88 78 83 58
de Chazal et al. [4] 89 9 87 99 75 39 80 81 86 83 57

Balanced This work 95 76 78 88 76 88 83 83 83 83 84
de Chazal et al. [4] 89 86 87 80 76 84 80 83 83 83 83

The results presented in [7], where the automatic classifier
of [4] is assisted by a local expert to improve its performance,
are also compared in Table III. This suggests that a similar
approach of combining the knowledge of a local expert with
our model, could also lead to a comparable improvement in
the baseline performance.

An additional assessment of the suggested model classifying
the four AAMI (N, S, V and F) classes is presented in Table
VI. The results verify the validity of the model achieving
slightly lower performance than the results presented in [4].
It must be noted that the model presented in this work was
optimized for the AAMI2 labeling (N, S and V’), and the
classifier is mainly misclassifying normal heartbeats as fusion,
as shown in Table VI.

The results in Table VII suggest that the selected features
have good generalization capability when evaluating the per-
formance in heartbeats not considered during the develop-

ment phase, like the ones from the INCART database. The
imbalanced performance is comparable for all classes except
the supraventricular where a decrease in the P+ occurred.
This could be explained by an increased class imbalance in
the INCART database which is about 75-to-1, while in MIT-
BIH-AR is 22-to-1 approximately. This is confirmed by the
balanced results (equivalent to a class imbalance of 1-to-1)
in the same Table, where the performance figures are very
similar. The validity of the generalization capability of the
proposed model, is somehow restricted to the available data,
and should be corroborated in future works by including new
databases in the analysis or other methodologies. Despite this
limitation, the degree of generalization of the suggested model
is expected to be better than models obtained considering only
the MIT-BIH-AR database.

One limitation of the presented approach is the Gaussian
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Table VII
CONFUSION MATRIX AS A RESULT OF SEPARATING ALL AAMI2 CLASSES IN THE INCART DATABASE. THE MODEL USED IS THE SELECTED FROM

TABLE II, TRAINED IN DS1 OF THE MIT-BIH-AR DATABASE. THE PERFORMANCES ARE EXPRESSED IN PERCENTAGES, AND GROUPED BY
PERFORMANCE CALCULATION MODE FOR EASY COMPARISON WITH THE RESULTS OBTAINED FROM DS2 OF MIT-BIH-AR (TABLE III).

Tr
ut

h

Algorithm
n s v’ Total

N 140983 10576 1958 153517
S 84 1660 214 1958
V’ 644 3007 16559 20210

Total 141711 15243 18731 175685

Performance Normal Suprav. Ventr. Total
calculation mode Dataset S P+ S P+ S P+ A S P+

Imbalanced DS2 MIT-BIH-AR 95 98 77 39 81 87 93 84 75
INCART 92 99 85 11 82 88 91 86 66

Balanced DS2 MIT-BIH-AR 95 79 77 88 81 88 84 84 85
INCART 92 92 85 80 82 87 86 86 86

By recording DS2 MIT-BIH-AR 95 83 61 73 75 86 94 80 82
INCART 93 90 64 66 71 86 91 79 85

assumption of the data imposed by the classifier, since many
features were observed not to fulfill this requirement. Despite
this evident limitation, the linear decision regions in the feature
space defined by the LDC-C allowed us to select those features
which inherently provide better classification performance.
Considering the proposed classifier and feature model as a
reference for future improvements, the effect of the lack of
Gaussianity can be mitigated using more complex classifiers,
like ANN’s or mixture of Gaussians. These classifiers allow
more complex decision regions in the feature space, retaining
details of the training data which may improve the classifica-
tion performance.

Despite the improved results presented in this work, there
is still room for improvement in the field since the S and
P+ for the supraventricular class are of 77% and 39%, and
for the ventricular class (though better) are of 81% and
87%. This results suggest that other features, classifiers or
meta-classifier strategies (like local expert assistance) can be
developed in order to improve the performance, specially in
the supraventricular class.
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