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Abstract—In this paper, an approach for heart rate variabil-
ity analysis during exercise stress testing is proposed based on
the integral pulse frequency modulation (IPFM) model, where a
time-varying threshold is included to account for the nonstation-
ary mean heart rate. The proposed technique allows the estimation
of the autonomic nervous system (ANS) modulating signal using
the methods derived for the IPFM model with constant threshold
plus a correction, which is shown to be needed to take into account
the time-varying mean heart rate. On simulations, this technique
allows the estimation of the ANS modulation on the heart from
the beat occurrence time series with lower errors than the IPFM
model with constant threshold (1.1% ± 1.3% versus 15.0% ±
14.9%). On an exercise stress testing database, the ANS modula-
tion estimated by the proposed technique is closer to physiology
than that obtained from the IPFM model with constant thresh-
old, which tends to overestimate the ANS modulation during the
recovery and underestimate it during the initial rest.

Index Terms—Autonomic nervous system (ANS) modulation,
exercise stress testing, heart rate variability (HRV), integral pulse
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frequency modulation (IPFM) model, respiratory sinus arrhyth-
mia, time-varying mean heart rate, time-varying threshold.

I. INTRODUCTION

THE integral pulse frequency modulation (IPFM) model has
been proposed for studying the properties of biomedical

signals, such as nerve spike trains [1], heart rate variability
(HRV) [2], and for modeling the information coding and signal
transmission through nervous fibers [3]. In the IPFM model,
a spike is generated when the integral of a modulating signal
reaches a threshold. Each time the threshold is reached, a spike
is generated and the integral is reseted.

Several works have used the IPFM model to explain the
regulation of the heart rate by the autonomic nervous system
(ANS) [1], [4]–[11], where the ANS regulation is represented
by the modulating signal and each spike generation represents a
beat occurrence. Thus, the IPFM model can be used to estimate
the ANS modulation on the sinoatrial (SA) node from the beat
occurrence times, which is of interest in many physiological
and pathological situations, in which the ANS activity may be
altered, unbalanced, or damaged. Stress testing [12], tilt-table
testing [13], and experiments of induced emotions [14] are some
examples of these physiological situations, while myocardial
infarction, diabetic neuropathy [15], and cardiac ischemia [16],
[17] are examples of the pathological situations. In order to
retrieve the ANS modulation on the SA node from the beat
occurrence time series, different representations of HRV have
been proposed, among which the heart timing signal has been
demonstrated to provide an unbiased estimation of the ANS
modulation, even in the presence of isolated ectopic beats [18],
[19].

However, the IPFM model assumes a constant threshold,
which in HRV analysis represents the mean heart period, not
being appropriate in certain situations, in which the mean heart
period is time varying, such as in exercise stress testing. In fact,
the necessity of taking into account the time-varying heart pe-
riod in the analysis of HRV during exercise stress testing was
pointed out in [20] and [21], where a different approach, named
the pulse frequency modulation model was applied to obtain the
modulating signal. The analysis of the IPFM model with time-
varying threshold has been previously addressed in [22], where
the spectrum of the spike train output of the IPFM model is com-
puted, in [23], where an IPFM model with periodically varied
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Fig. 1. Block diagram of the different IPFM models. (a) Classical IPFM
model. (b) TVIPFM model. (c) Alternative TVIPFM model.

threshold is studied from the viewpoint of nonlinear dynamics,
in [24], where a parametric approach is proposed to estimate
the modulating signal as well as the time-varying threshold of
the IPFM model, and in [25], where the effect of a time-varying
threshold on the heart period is studied for a sinusoidal modu-
lating signal.

In this paper, we propose an approach to the analysis of the
time-varying threshold IPFM (TVIPFM) model applied to the
analysis of HRV during exercise stress testing, which allows the
estimation of the modulating signal using the methods derived
for IPFM model with constant threshold plus a correction, which
takes into account the time-varying threshold.

The paper is organized as follows. The IPFM model with
constant and time-varying threshold are presented in Section II,
where it is also described the simulation study designed to eval-
uate the performance of our approach, which simulates the beat
occurrence time series during stress testing, as well as an ex-
ercise stress testing database, which is analyzed. Section III
presents the results and Section IV a discussion of the proposed
approach.

II. METHODS AND MATERIALS

A. IPFM Model

In order to relate and derive the ANS influence on the beat
occurrence time series tk , which is the available information,
we rely on the IPFM model. The IPFM model is based on
the hypothesis that the ANS influence on the SA node can be
represented by the modulating signal �(t), and a beat trigger
impulse is generated when the integral of 1 + �(t) reaches a
threshold T , which represents the mean heart period, resetting
the integrator [5] [see Fig. 1(a)]. The modulating signal �(t) is
assumed to be causal, band-limited, and �(t) < 1.

Based on the IPFM model and assuming that the first beat
occurs at time t0 = 0, the beat occurrence time series can be

generated as solution of

k =
∫ tk

0

1 + �(t)
T

dt (1)

where k and tk represent the beat order and occurrence time of
this kth beat [8], respectively. The term

dHR(t) =
1 + �(t)

T
(2)

represents the instantaneous heart rate in hertz, T is the mean
RR interval (heart period) in seconds in the analyzed epoch,
1/T the mean heart rate, and dHRV(t) = �(t)/T represents the
HRV in hertz. Note that dHRV(t) represents the time-varying
part of the instantaneous heart rate dHR(t).

The IPFM model can be generalized to continuous time
rewriting (1) as follows [18]:

κ(t) =
∫ t

0

1 + �(τ)
T

dτ (3)

where κ(t) is the continuous beat-order function such that
κ(tk ) = k.

Note that dHR(t) can be obtained differentiating κ(t) with
respect to t, dHR(t) = κ′(t), without any knowledge of T .

Then, the modulating signal �(t) can be obtained by rewriting
from (2) as follows:

�(t) = T · dHR(t) − 1. (4)

In practice, κ̂(t) is estimated by a spline interpolation of the
pairs (tk , k), then analytically derived to obtain d̂HR(t) [18], T̂
is estimated as the mean heart period in the analyzed interval,
and, finally

�̂(t) = T̂ · d̂HR(t) − 1. (5)

In situations, in which the mean heart period T is time varying,
i.e., T (t), such as during stress testing, the estimate �̂(t) in
(5) also contains the variations of T (t), which usually are of
much lower frequency. For this reason, and to overpass this
limitation, �̂(t) is usually high-pass filtered in order to remove
the variations nonrelated to the modulating signal, assuming that
these variations are of lower frequency and do not overlap with
those related to �(t). This estimate is denoted as �̂0(t). As it
will be shown in Section III, the amplitude of the variations of
�̂0(t) are still affected by the time-varying heart period T (t),
making �̂0(t) a bias estimator.

B. IPFM Model With Time-Varying Threshold

In the TVIPFM model, the integral of 1 + �(t) is compared
to a time-varying threshold T (t), representing the time-varying
mean heart period, which can be decomposed as a constant
component TDC and a time-varying component TAC(t), T (t) =
TDC + TAC(t) [24] [see Fig. 1(b)].

Assuming, as in Section II-A, that �(t) is causal, band-
limited, �(t) < 1, and that T (t) is constant between two succes-
sive beats, the beat occurrence time series can be approximated
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by

k ≈
∫ tk

0

1 + �(t)
T (t)

dt (6)

being the instantaneous heart rate

dHR(t) =
1 + �(t)

T (t)
. (7)

Assuming that the variations of the term 1/T (t) are slower
than those of the term �(t)/T (t), and that their spectral compo-
nents do not overlap, a time-varying mean heart rate dHRM(t)
can be defined as follows:

dHRM(t) =
1

T (t)
. (8)

Then, the HRV signal dHRV(t) can be computed as follows:

dHRV(t) = dHR(t) − dHRM(t) =
�(t)
T (t)

. (9)

From (9), it is evident that the modulating signal can be obtained
by correcting the HRV signal dHRV(t) by the time-varying mean
heart rate dHRM(t)

�(t) = dHRV(t)T (t) =
dHRV(t)
dHRM(t)

. (10)

Based on (7), different approaches can be considered for the
estimation of the modulating signal �(t).

1) Approach A: Equations (7), (8), and (9) can be seen from
an alternative IPFM model with constant threshold, in which the
effect on the output of the variations of the mean heart period
TAC(t) can be attributed to an extra modulating signal �T(t),
additional to �(t), causal, band-limited, �T(t) < 1, and whose
spectral components are lower than, and do not overlap with,
those of �(t). The block diagram of this alternative TVIPFM
model can be seen in Fig. 1(c). If the variations of the time-
varying threshold TAC(t) are small compared to its mean value
TDC , the TVIPFM model of Fig. 1(b) and the alternative model
of Fig. 1(c) can be shown to be approximately equivalent.

Let us start by rewriting (7)

dHR(t) =
1 + �(t)

T (t)
=

1 + �(t)
TDC + TAC(t)

=
1 + �(t)

TDC(1 + TAC(t)/TDC)

≈ 1 + �(t)
TDC

(
1 − TAC(t)

TDC

)
(11)

such that, neglecting second-order terms, becomes

dHR(t) ≈ 1 + �(t) − (TAC(t)/TDC)
TDC

(12)

and, identifying terms in (2), �T(t) = −TAC(t)/TDC .
In this case, the instantaneous heart rate dHR(t) can be

obtained differentiating κ(t) with respect to t, just as in
Section II-A, as follows:

dHR(t) = κ′(t) ≈ 1 + �(t) + �T(t)
TDC

. (13)

The time-varying mean heart rate dHRM(t) is defined as follows:

dHRM(t) ≈ 1 + �T(t)
TDC

(14)

and the HRV signal dHRV(t) is computed as follows:

dHRV(t) ≈ dHR(t) − dHRM(t) ≈ �(t)
TDC

. (15)

Assuming

dHRM(t) ≈ 1 + �T(t)
TDC

≈ 1
TDC

(16)

the expression in (10) is still valid. In order to estimate �(t),
the term d̂HR(t) is first estimated from (13), where κ̂(t) is ob-
tained by spline interpolation of the pairs (tk , k). Then, the
term d̂HRM(t) is estimated by low-pass filtering d̂HR(t), and
d̂HRV(t) is estimated from the middle term in (15). Finally, the
estimate of �(t), denoted as �̂A(t), is obtained from (10) as
follows:

�̂A(t) =
d̂HRV(t)

d̂HRM(t)
. (17)

This approach allows the interpretation of the effect of a time-
varying threshold on the IPFM model as due to an extra mod-
ulating signal �T(t), different from �(t), and to use the robust
methods derived for the analysis of HRV based on the classical
IPFM model with constant threshold [18], [19], which take into
account the presence of ectopic beats.

2) Approach B: An alternative approach for the estimation
of the modulating signal �(t), which combines the results from
the TVIPFM model with those of the IPFM model with constant
threshold is the following.

Assuming that the quantity dHR(t) is constant over two suc-
cessive beat times (tk−1 < t < tk ), where no more information
is available, the integration between two successive pulses may
be computed by

1 =
∫ tk

tk −1

dHR(t)dt ≈ dHR(tk−1)(tk − tk−1)

≈ dHR(tk )(tk − tk−1) ≈ dHR (tkc
) (tk − tk−1) (18)

where tkc
= (tk−1 + tk )/2 represents the in–between beat oc-

currence time.
Then, replacing dHR (tkc

) by its value in (7), we get

� (tkc
) ≈ T (tkc

)
(tk − tk−1)

− 1 =
T (tkc

) − (tk − tk−1)
(tk − tk−1)

. (19)

The term T (t) is estimated from d̂HRM(t), as in approach
A, by T̂ (t) = 1/d̂HRM(t), and then evaluated at t = tkc

. The
term T̂ (tkc

) is substituted in (19) to obtain what is denoted as
�̂B (tkc

), and the continuous signal �̂B(t) is estimated by spline
interpolation of the pairs [tkc

, �̂B (tkc
)]. An alternative ap-

proach for the estimation of T̂ (tkc
) is described in Appendix A.

3) Approach C: Yet another approach for the estimation of
the modulating signal �(t) based on the TVIPFM model can be
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Fig. 2. Simulated signal: (a) FHF (t) (dashed-dotted line), ALF (t) (dashed
line), and AHF (t) (solid line); and (b) T (t)

considered [25] from (19)

� (tkc
) ≈ T (tkc

) − (tk − tk−1)
T (tkc

)
. (20)

The estimate in (20) is denoted as �̂C (tkc
); the continuous

signal �̂C (t) can be estimated by spline interpolation of the
pairs [tkc

, �̂C (tkc
)].

C. Materials

1) Simulation Study: Due to the unavailability of a “true”
reference-modulating signal representing the ANS regulation
on the heart, a simulation study has been designed to evaluate
the performance of the different approaches presented in this
paper.

The ANS modulation during stress testing may be modeled
by two sinusoids representing the low-frequency (LF) and high-
frequency (HF) components, respectively. Thus, the analytic
signal of the modulating signal �(t) can be modeled as follows
[12]:

a�(t) = ALF(t)ejΦL F (t) + AHF(t)ejΦH F (t) . (21)

The LF and HF components are defined by the am-
plitudes ALF(t) and AHF(t), and the instantaneous fre-
quencies FLF(t) = (1/2π)(dΦLF(t)/dt) and FHF(t) = (1/2π)
(dΦHF(t)/dt), respectively. The very low frequency (VLF)
component is not considered in this model since it cannot be
estimated during stress testing. The FLF(t) is assumed to be
constant during the stress test and set to 0.1 Hz, while the FHF(t)
is set to be the respiratory frequency measured during a stress
test recording using an airflow thermistor [26]. The frequency
FHF(t) and amplitudes ALF(t) and AHF(t) of the simulated
signals are displayed in Fig. 2(a).

A time-varying mean heart period T (t), displayed in Fig. 2(b),
is simulated as the inverse of a time-varying mean heart rate,
which increases linearly [27]–[29] from 60 bpm (1 Hz) at the
beginning of the stress test to 180 bpm (3 Hz) at peak stress,
and decreases linearly during recovery until the initial value of
60 bpm.

Given the modulating signal �(t) and the time-varying thresh-
old T (t), the beat occurrence time series tk is generated based
on the TVIPFM model of Fig. 1(b). Then, the time series tk
are contaminated with additive white Gaussian noise (AWGN)
in order to simulate the jitter in the QRS fiducial point of the
estimated beat occurrence time series, i.e., t̂k = tk + vk , where

TABLE I
STUDY POPULATION CHARACTERISTICS

vk is a series of AWGN with variance σ2 . Different values of σ2

(0.04 × 10−5 , 2.5 × 10−5 , and 10 × 10−5 s2) have been consid-
ered representing different jitter in the QRS fiducial point (2, 5,
and 10 ms, respectively).

A sampling frequency of 1000 Hz is used for the simulated
�(t) and T (t).

2) Stress Testing Database: A database of stress testing
recordings belonging to subjects with different training status is
analyzed. All the subjects were nonsmokers and none was tak-
ing any medication. Physical activity, and alcohol and caffeine
beverages consumption were prohibited 24 h before any exer-
cise testing session. Following a 5-min resting period during
which subjects stayed seated on the bicycle, all subjects per-
formed a maximal graded exercise test with constant pedaling
frequency, completing the exercise test without any clinical ab-
normality or discomfort. Initial workload and subsequent 2-min
step workload increments were set to ensure a 12- to 15-min
maximal exercise test. Subjects characteristics are shown in
Table I, more information can be found in [30].

During the exercise test and the preceding 5 min (rest), a
three-lead ECG was recorded and digitized online by a 12-bit
analog-to-digital converter at a sampling rate of 1000 Hz on a
personal computer.

Detection of the beat occurrence time series t̂k is performed
on one of the ECG leads, placed collinearly to the standard DII
derivation directly on the chest in order to avoid limbs motion
artifacts, after removing baseline with a high-pass finite impulse
response filter.

D. Performance Measurements

In order to evaluate the different approaches, different perfor-
mance measurements are considered. First, the estimated mod-
ulating signal �̂(n) is compared to the simulated modulating
signal �(n) (signals �̂(n) and �(n) represent �̂(t) and �(t),
respectively, sampled at a sampling frequency of Fs (in Hz)).
Then, clinical HRV parameters, namely the power of the LF and
HF components, derived from �̂(n) (P̂LF(n) and P̂HF(n), re-
spectively) are compared with those derived from �(n) (PLF(n)
and PHF(n), respectively). Parameters PLF(n) and PHF(n) are
computed at each time instant n as follows:

PLF(n) =
1
2

1
2K − 1

m 2∑
m=m 1

P�(n,m)

PHF(n) =
1
2

1
2K − 1

m 4∑
m=m 3

P�(n,m) (22)
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TABLE II
PARAMETER VALUES

where P�(n,m) is the discrete smoothed pseudo Wigner–Ville
distribution (SPWVD) of �(n) defined as follows:

P�(n,m) = 2
K−1∑

k=−K +1

|h(k)|2

×
[

N −1∑
n ′=−N +1

g(n′)a�(n + n′ + k)a∗
�
(n + n′ − k)

]

× e−j2π m
M k ; m = −M + 1, . . . ,M, (23)

where n and m are the time and frequency indices, respectively,
and a�(n) is the analytic signal of �(n). The terms g(n) and
|h(k)|2 represent the time and frequency smoothing windows,
respectively, chosen to be

g(n) =

⎧⎨
⎩

1
2N − 1

, n = −N + 1, . . . , N − 1

0, otherwise

(24)

and

|h(k)|2 =
{

e−γ |k |, k = −K + 1, . . . ,K − 1

0, otherwise.
(25)

Parameter values used in the estimation of PLF(n) and PHF(n)
are given in Table II, where the LF band is defined in its standard
way from 0.04 to 0.15 Hz, while a time-varying HF band is
defined centered on the respiratory frequency Fr (n) (in Hz) with
a bandwidth of 0.14 Hz [31]. Parameters P̂LF(n) and P̂HF(n)
are computed from (22) and (23) substituting �(n) with �̂(n).

For each value of σ2 , a total of Q = 100 realizations have
been simulated. A relative error trend eq

θ%(n) is defined for
each realization q and for each parameter θ(n), where θ(n) ∈
{�(n), PLF(n), PHF(n)}

eq
θ%(n) =

θ̂q (n) − θ(n)
ηθ (n)

100(%). (26)

The term θ̂q (n) represents the estimate of θ(n) in realization q,
and the term ηθ (n) ∈ {b�(n), PLF(n), PHF(n)}, where b�(n)
is the envelope of �(n).

An averaged relative error trend eθ%(n) can be defined as
follows:

eθ%(n) =
1
Q

Q∑
q=1

eq
θ%(n). (27)

For each realization q, the mean and SD of the error trends are
computed and then averaged among the Q realizations, giving

the performance measurements μθ% and σ2
θ%

μθ% =
1
Q

Q∑
q=1

1
Nq

Nq∑
n=1

|eq
θ%(n)|

σ2
θ% =

1
Q

Q∑
q=1

1
Nq − 1

Nq∑
n=1

⎛
⎝|eq

θ%(n)| − 1
Nq

Nq∑
n=1

|eq
θ%(n)|

⎞
⎠

2

(28)

where Nq is the number of samples of θ̂q (n).

III. RESULTS

A. Simulation Study

From the simulated t̂k series, the modulating signal �(n)
is estimated using the approaches �̂0(n), �̂A(n), �̂B(n), and
�̂C(n), described in Sections II-A and B. A sampling frequency
of Fs = 4 Hz and a fifth-order spline interpolation is used in
all the approaches. The estimate �̂0(n) is obtained by high-pass
filtering �̂(n) with a cut-off frequency of 0.03 Hz, which is the
same cut-off frequency used to obtain the time-varying mean
heart rate d̂HRM(n). This cut-off frequency is below the lower
limit of the LF band (0.04–0.15 Hz). The respiratory frequency
Fr (n) needed for the estimation of PHF(n) is assumed to be
equal to the instantaneous frequency of the HF component, and
known.

Fig. 3 displays the SPWVD of the simulated modulating sig-
nal �(n), as well as for �̂0(n) and �̂A(n). It can be observed
that �̂A(n) and �(n) present similar characteristics, such as the
progressive diminution of both the LF and HF amplitudes during
the exercise, which is noticeable as lighter grays approximately
from second 400 to 600. This effect cannot be appreciated in
�̂0(n), which presents even darker grays around the stress peak.

Table III displays the performance measurements obtained by
the approaches proposed in this paper to estimate the modulating
signal based on the TVIPFM model.

Regarding the parameters μ�% ± σ�% , it can be appreci-
ated that all the three methods based on the TVIPFM model
[�̂A(n), �̂B(n), and �̂C(n)] obtained notably lower values than
the method based on the IPFM model with constant thresh-
old [�̂0(n)], for all values of σ2 considered, being the differ-
ences larger for lower values of σ2 . In the absence of noise,
�̂A(n) obtained the lowest values, while the differences be-
tween �̂A(n), �̂B(n), and �̂C(n) became insignificant when
noise was added. Estimates �̂B(n) and �̂C(n) obtained slightly
lower values than �̂A(n) for σ = 5 ms. Regarding the clin-
ical HRV parameters (μPL F % ± σPL F % , and μPH F % ± σPH F % ),
approaches A, B, and C obtained much lower values than the
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Fig. 3. SPWVD of (a) �(n), (b) �̂0 (n), and (c) �̂A (n). In the gray scale,
lighter grays stand for lower values and darker grays for higher values.

TABLE III
PERFORMANCE MEASUREMENTS μθ% ± σθ% OBTAINED BY

�̂0 (n), �̂A (n), �̂B (n), AND �̂C (n) FOR DIFFERENT VALUES OF σ

one based on �̂0(n). For μPL F % ± σPL F % , methods A, B, and
C obtained similar results, which slightly increased when σ
increased. For μPH F % ± σPH F % , approach A obtained notably
lower values than approaches B and C.

Fig. 4 displays the averaged relative error trend eθ%(n) cor-
responding to �̂0(n), �̂A(n), �̂B(n), and �̂C(n) for σ = 2 ms.
Note that the average relative error trends e�%(n), ePL F %(n),
and ePH F %(n), corresponding to the IPFM model with constant
threshold [related to �̂0(n)], are dependent on the value of T (t),
being minimum when T (t) equals its mean value and maximum
for the lowest and highest values of T (t). However, the average
error trends corresponding to the TVIPFM model [related to
�̂A(n), �̂B(n), and �̂C(n)] do not depend on the value of T (t),

although a peak is observed in the vicinity of stress peak, where
there is an abrupt nonphysiological change in T (t), which can
not be followed by d̂HRM(n).

B. Stress Testing Database

From the t̂k series estimated from the stress testing record-
ings described in Section II-C2, the modulating signal is esti-
mated using �̂0(n) and �̂A(n). Estimates �̂0(n) and �̂A(n)
are then filtered with a time-varying filter centered on the
respiratory frequency [21] with a bandwidth of 0.14 Hz, and
the envelopes of the filtered signals denoted as b̂�0 , H F (n) and

b̂�A , H F (n), respectively. Estimates �̂0(n), �̂A(n), b̂�0 , H F (n),
b̂�A , H F (n), b̂�A , H F (n) − b̂�0 , H F (n), and d̂HRM(n) are displayed
in Fig. 5 for one of the subjects (with less than 10 h train-
ing per week), who performed the stress test at a pedalling
frequency of 75 r/min. It can be appreciated that differences
between b̂�0 , H F (n) and b̂�A , H F (n) depend on the time-varying

mean heart rate d̂HRM(n) being larger when d̂HRM(n) departs
from its mean value. This can lead to erroneous interpretation
of the ANS response to exercise when estimating its evolution
from the changes observed in the estimated modulating signal.
By using �̂0(n) in this example, the return of the vagal activ-
ity [measured from b̂�0 , H F (n)] observed in the early stage of
the recovery (from second 1200 to 1400) reaches similar val-
ues than those corresponding to the beginning of the exercise
(before second 300). This conclusion is slightly different by us-
ing b̂�A , H F (n), where the two levels are different. Indeed, the
latter conclusion is more likely from a physiological point of
view [32].

In order to quantify the differences in the estimation of the
modulating signal using the IPFM model with constant or time-
varying threshold, the mean and SD of the difference between
b̂�A , H F (n) and b̂�0 , H F (n) are computed for each subject of
Section II-C2, and then averaged among the 23 subjects, yield-
ing a result of 10.5% ± 27.5% with respect to �̂A(n). This
difference is of 50.6% ± 3.8% during the initial 5-min resting
period and of −7.7% ± 14.3% during the first 2 min of the
recovery phase, confirming the observation made from the ex-
ample of Fig. 5, i.e., �̂0(n) tends to overestimate vagal activity
during the recovery and to underestimate it during the initial
rest.

Inspection of Fig. 5 reveals an abrupt increase in d̂HRM(n)
just after the onset of exercise (second 300), which is visible
in all subjects of the database and may be due to the central
command or the exercise pressor reflex in response to exercise
[33]. The plateau observed from second 300 to 450, visible in
some but not all the subjects, corresponds to the lowest intensity
exercise and it may be associated to a transient response of the
ANS at the onset of exercise. Note that a similar plateau is also
observed in b̂�A , H F (n) at lower values than those during rest,
which then decreases concomitant with the linear increase in
d̂HRM(n), until second 1000, when it slightly increases. During
the recovery, there is an abrupt increase in b̂�A , H F (n), which
gradually decreases as the heart rate decreases, reaching values
close to those observed during exercise. There is evidence that
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Fig. 4. Average relative error trend (a) e�% (n), (b) ePL F % (n), and (c) ePH F % (n), corresponding, from top to bottom, to �̂0 (n), �̂A (n), �̂B (n), and �̂C (n),
for σ = 2 ms.

the HF power, as well as other HRV indices, remains reduced
with respect to resting values after 5, 10, 15, 30 min, or even
an hour of the cessation of exercise [32], depending on exercise
intensity and modality [34].

IV. DISCUSSION

A. Methodological Aspects

In this paper, the TVIPFM model is applied to the analysis of
HRV during exercise stress testing.

The classical IPFM model has been previously used in HRV
analysis to estimate the ANS modulation on the heart from the
beat occurrence time series, even in the presence of isolated
ectopic beats, when the mean heart period can be considered
constant [18], [19]. However, in situations, in which the mean
heart period is time varying, such as during exercise stress test-
ing, the estimation of the modulating signal in (1) needs to be
modified, as proposed in (10), to account for the mean heart
period modulation.

Three approaches have been considered to analyze the
TVIPFM model, which allow the estimation of the modulat-
ing signal using the methods derived for the IPFM model with

constant threshold plus a correction, which takes into account
the time-varying threshold. The three approaches are based on
the hypothesis that, in the time-varying threshold case, the in-
stantaneous heart rate, derived as in the classical IPFM model,
can be written as dHR(t) = (1 + �(t))/T (t). A time-varying
mean heart rate, which is the inverse of the time-varying mean
heart period, is estimated by low-pass filtering dHR(t). Ap-
proach A estimates the modulating signal multiplying the HRV
signal with the time-varying mean heart period; approach B,
dividing the variability of the heart period signal by the heart
period signal itself; and approach C, dividing the variability of
the heart period signal by the time-varying mean heart period.

Results from the simulation study show that the three ap-
proaches estimate the modulating signal as well as clinical HRV
parameters with lower error than the classical IPFM model with
constant threshold, being the differences larger for lower lev-
els of noise. Approaches A, B, and C estimate the modulating
signal with similar errors, being approach A the one achieving
the lowest error in the absence of noise (1.1% ± 1.3%). In the
presence of high levels of noise (σ = 5 ms), approaches B and C
obtained lower estimation errors than approach A, which can be
due to the low pass-filtering effect associated to the heart period
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Fig. 5. Estimates for one of the subjects of Section II-C2: (a) �̂0 (n);
(b) �̂A (n); (c) b̂�0 , H F (n) (grey) and b̂�A , H F (n) (black); (d) b̂�A , H F (n)-

b̂�0 , H F (n); and (e) d̂HRM (n).

signal on which approaches B and C are based [18]. It is worth
noting that, while the power of the LF component is estimated
with similar errors by the three approaches for all levels of
noise, the power of the HF component is estimated with notably
lower error by approach A (0.7% ± 0.5%) than by approaches
B (12.6% ± 5.1%) and C (11.5% ± 4.9%). This, again, can

be explained by the low-pass-filtering effect when estimating
HRV from the heart period signal [18], and is not related to the
influence of sympathetic and parasympathetic stimulations on
the sinus node. An alternative approach for the estimation of
approaches B and C, which is not based on dHR(t), but only
on the heart period dHP(t) signal is considered in Appendix A,
yielding similar results (not shown).

In this paper, a time-varying HF band centered on the respira-
tory frequency [31] has been considered both in the simulation
study and in the stress testing database. When a simultane-
ously recorded respiration signal is not available, respiratory
frequency can be derived from the ECG signal using, e.g., the
method described in [26], which has been shown to provide
reliable respiratory frequency estimates during stress testing.

The TVIPFM has been also applied to the analysis of HRV
in [24], where the modulating signal as well as the time-varying
threshold are decomposed into a series of orthogonal basis func-
tions. Despite its computational complexity, one of the advan-
tages of the method in [24] is that it does not require the time-
varying threshold to be of lower frequency than the modulating
signal. However, the application of the method in [24] to the
analysis of HRV during exercise stress testing requires further
considerations since the frequency band covered by the basis
functions depends on the mean heart rate, which is time-varying
during exercise stress testing. If the most restrictive frequency
band, given by the lowest mean heart rate, is chosen for the basis
functions, it may not be large enough to include the LF as well as
the HF components, centered on respiratory frequency, or even
other components such as the pedaling component, when the ex-
ercise intensity is high. This could be overcome by performing
the analysis in short-time intervals, whose length is inversely
proportional to the frequency resolution of the basis functions.

A note of caution should be considered when using different
representations of HRV, since the effect of a time-varying mean
heart rate may be different. For example, if the power of the
LF and HF components are obtained from the heart rate signal,
an increase in mean heart rate leads to an overestimation of the
modulating signal (see Figs. 3, 4, and 5), while if the heart period
signal is used, it leads to an underestimation of the modulating
signal [20], [21], [25] (see Appendix B for an analytical exam-
ple). The later case is, in fact, an interpretation of approaches B
and C.

B. Physiological Aspects

An important result derived from the simulation study is that
the estimation error of the modulating signal (and of the clinical
HRV parameters) obtained by the classical IPFM model is de-
pendent on the value of the time-varying threshold, while it does
not depend on it when the TVIPFM model is considered. This is
of particular importance when the ANS evolution is estimated
from the changes observed in the estimated modulating signal
(or in the clinical HRV parameters) and may lead to erroneous
interpretation of the ANS response to exercise. One example
is the mechanical stretching modulation of the sinus node due
to respiration, which may be overestimated if the time-varying
threshold is not considered. Another example is the return of
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vagal activity during recovery, which is relevant in stress testing
studies [35], [36] and may be overestimated by the IPFM model
with constant threshold.

The suitability of the TVIPFM model to the analysis of HRV
during exercise stress testing may be justified by the observation
that the mean heart period is not constant during the exercise,
but increases with work load to satisfy the increasing metabolic
demand. But the TVIPFM model may be useful for the analysis
of HRV in a wider context. It is worth mentioning that threshold
modulation was first introduced in the classical IPFM model in
order to study the possibility of transmitting two informations,
with potentially different sources, along the same channel [22].
The TVIPFM has been applied to HRV analysis in [24] to dis-
criminate between the ANS modulation of the SA node and the
stretch-induced effect, since there is evidence that the variations
in sinus rhythm caused by autonomic modulation and stretch-
induced variations are mediated through different mechanisms:
the rate of depolarization for the former and the threshold level
for the later. Moreover, the autonomic modulation itself has been
shown to affect the sinus rhythm through different mechanisms.
For example, the stimulation of the sympathetic nerves releases
the hormone norepinephrine, which is believed to increase the
permeability of the fiber membrane to sodium and calcium ions,
which in turn, causes a more positive resting potential, and also
causes increased rate of upward drift of the membrane potential
during diastolic depolarization [37]. Parasympathetic stimula-
tion releases acetylcholine, which may cause a decrease in the
slope of diastolic depolarization, an increase (in absolute value)
in maximum diastolic potential, and an increase in the threshold
potential [38], [39]. In the TVIPFM model, the changes in the
slope of the diastolic depolarization membrane potential can
be modeled by the modulating signal �(t), while changes in
both threshold potential and maximum diastolic potential may
be modeled by the time-varying threshold T (t).

One of the limitations of the TVIPFM model concerning the
physiological interpretation of HRV is that it cannot distinguish
from different sources of sympathetic or parasympathetic stim-
ulations, which share the same frequency band.

V. CONCLUSION

In this paper, a new technique for the analysis of HRV dur-
ing exercise stress testing has been introduced based on the
TVIPFM model. On a simulation study, this technique allows
the estimation of the ANS modulation on the heart from the beat
occurrence time series with lower bias and SD than the classical
IPFM model with constant threshold. Estimation errors achieved
by this technique are independent from the time-varying mean
heart rate, as opposed to the ones obtained by the classical
IPFM model. On an exercise stress testing database, the ANS
modulation estimated by the proposed technique is closer to
physiology than that obtained from the classical IPFM model
with constant threshold. In situations where HRV measurements
at different mean heart periods are compared, the proposed cor-
rection of HRV measurements with the time-varying mean heart
rate should be considered.

APPENDIX A

An alternative approach for the estimation of T̂ (tkc
), which

may be used in (19) and (20), is the following. Note that thanks
to (19) and assuming that � (tkc

) is small compared to 1, the
heart period signal, estimated by the interval function, can be
written as follows:

d̂HP(tk ) = dIF(tk ) = tk − tk−1 =
T (tkc

)
1 + � (tkc

)

≈ T (tkc
) [1 − � (tkc

)] ≈ T (tkc
) − T (tkc

) � (tkc
)

(29)

which can be considered to be approximately composed of
a low-pass component T (tkc

) and a high-pass component
T (tkc

) � (tkc
). Assuming that T (t) is of lower frequency and

�(t) of higher frequency, the separation of lower and higher
frequency components is straightforward. Therefore, T̂ (tkc

) is
easily computed low-pass filtering d̂HP(tk ), and, consequently,
�̂ (tkc

) by using (19) or (20).

APPENDIX B

Using as modulating signal �(t) = A cos(2πf1t) into the
IPFM model (1) for successive beats leads to

tk − tk−1 +
A

2πf1
(sin(2πf1tk ) − sin(2πf1tk−1)) = T.

(30)
If f1(tk − tk−1) ≈ f1T � 1, the heart period signal, esti-

mated by the interval function, can be written as follows [25]:

d̂HP(tk ) ≈ T − AT cos(πf1(2tk − T )) (31)

which represents an estimate of �(t) with a scaling fac-
tor proportional to the mean heart period T . If A � 1, the
heart rate signal, estimated by the inverse interval function
d̂HR(tk ) = dIIF(tk ) = 1/(tk − tk−1), can be written as follows:

d̂HR(tk ) ≈ 1
T

+
A

T
cos(πf1(2tk − T )) (32)

which, in contrast with the heart period signal, represents an
estimate of �(t) with a scaling factor inversely proportional
to T .
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