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a b s t r a c t

This paper presents a novel method for the analysis of heart rate variability (HRV) during exercise stress
testing enhanced with respiratory information. The instantaneous frequency and power of the low fre-
quency (LF) and high frequency (HF) bands of the HRV are estimated by parametric decomposition of
the instantaneous autocorrelation function (ACF) as a sum of damped sinusoids. The instantaneous ACF
is first windowed and filtered to reduce the cross terms. The inclusion of respiratory information is pro-
posed at different stages of the analysis, namely, the design of the filter applied to the instantaneous
ACF, the parametric decomposition, and the definition of a dynamic HF band. The performance of the
method is evaluated on simulated data as well as on a stress testing database. The simulation results
espiratory frequency
ime–frequency analysis
arametric decomposition

show that the inclusion of respiratory information reduces the estimation error of the amplitude of the
HF component from 3.5% to 2.4% in mean and related SD from 3.0% to 1.7% when a tuned time smoothing
window is used at an SNR of 15 dB. Results from the stress testing database show that information on
respiratory frequency produces HF power estimates which closely resemble those from the simulations
which exhibited lower SD. The mean SD of these estimates with respect to their mean trends is reduced
by 84% (from 0.74 × 10−3 s−2 to 0.12 × 10−3 s−2). The analysis of HRV in the stress testing database reveals

he po
a significant decrease in t

. Introduction

Spectral analysis of heart rate variability (HRV) is widely used
s a non-invasive technique for the assessment of the auto-
omic nervous system (ANS) activity on the heart and the balance
etween the sympathetic and parasympathetic systems [1]. This
alance may be altered under certain pathological conditions,
uch as myocardial infarction, diabetic neuropathy [1], and cardiac
schemia [2,3]. Standards of measurement, physiological interpre-
ation and clinical use of HRV in resting conditions have been
stablished, involving three different spectral components: a very
ow frequency (VLF) component in the range between 0 and

.04 Hz, a low frequency (LF) component between 0.04 and 0.15 Hz,
nd a high frequency (HF) component between 0.15 and 0.4 Hz [1].
he power in the HF band is considered to be a measure of parasym-
athetic activity, mainly due to respiratory sinus arrhythmia (RSA).

∗ Corresponding author at: Communications Technology Group (GTC) at the
ragón Institute of Engineering Research (I3A), University of Zaragoza, María de
una 1, Ed. Ada Byron, 50018 Zaragoza, Spain.

E-mail address: rbailon@unizar.es (R. Bailón).

746-8094/$ – see front matter © 2010 Elsevier Ltd. All rights reserved.
oi:10.1016/j.bspc.2010.05.005
wer of both the LF and HF components around peak stress.
© 2010 Elsevier Ltd. All rights reserved.

The power in the LF band is considered to be a measure of sympa-
thetic and parasympathetic activity, together with other regulatory
mechanisms such as the rennin–angiotensin system and baroreflex
[4], its interpretation being controversial when, e.g. the respiratory
frequency lies in the LF band.

Certain indices of HRV analysis during exercise stress testing
have shown added value in the diagnosis of coronary artery dis-
ease [5]. The analysis of HRV during stress testing is challenging
due to the non-stationary recording conditions. The factors which
influence HRV during spontaneous conditions [6] are altered during
exercise [7]. Several approaches to non-stationary analysis of HRV
have been proposed in the literature [8], of which time–frequency
(TF) analysis is the most common. This approach can be divided
into three categories: (i) non-parametric methods based on lin-
ear filtering, including the short-time Fourier transform [9–11]
and the wavelet transform [12–14], (ii) non-parametric quadratic
TF representations, including the Wigner–Ville distribution and

its filtered versions [15–17], and (iii) parametric methods based
on autoregressive models with time-varying coefficients [18,10].
The smoothed pseudo Wigner–Ville distribution (SPWVD) provides
better resolution than non-parametric linear methods, indepen-
dent control of time and frequency filtering, and power estimates

dx.doi.org/10.1016/j.bspc.2010.05.005
http://www.sciencedirect.com/science/journal/17468094
http://www.elsevier.com/locate/bspc
mailto:rbailon@unizar.es
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ith lower variance than parametric methods when rapid changes
ccur [16,19]. The main drawback of the SPWVD is the presence of
ross terms, which can be attenuated by time and frequency filter-
ng. In this work an approach for overcoming this drawback in the
ontext of HRV analysis during stress testing is considered.

The coupling between the cardiovascular and respiratory sys-
ems results in modulation of the heart rate, i.e. RSA, mainly due
o parasympathetic activity at rest [20–22]. However, the use of

easures extracted from the RSA as indices of parasympathetic
ctivity during exercise is questionable. During exercise, inhibition
f the parasympathetic activity is followed by an increase in the
ympathetic activity at high work loads [23,7]. According to the
arasympathetic withdrawal, the RSA decreases from the begin-
ing of the exercise, whereas an increase in RSA is observed during
igh work loads which cannot be explained by parasympathetic
ctivity. This increase can be attributed to mechanical stretching of
he sinus node in response to a ventilation increase [24,25].

The fact that respiratory frequency is not restricted to the clas-
ical HF band [0.15, 0.4] Hz during exercise stress testing makes it
ecessary to redefine the HF band [26]. In some studies, the HF band

s extended to include the whole range of possible respiratory fre-
uencies [27,28,9,29,13], the upper limit being half the mean heart
ate (HR). In other cases, the HF band is centered on the respiratory
requency with constant or time-dependent bandwidth [14]. The
F band can be redefined to range from its lower limit (i.e. 0.04 Hz)
o the lower limit of the HF band.

In this paper, a method for HRV analysis during exercise stress
esting is presented which makes use of information on respira-
ory frequency. The objective of this work is to propose a method
or HRV analysis during stress testing which makes use of informa-
ion on respiratory frequency when estimating the instantaneous
requency and power of the LF and HF components. The method is
n extension of the parametric decomposition of the instantaneous
utocorrelation function (ACF) on which the SPWVD is based, pre-
iously applied to analysis of HRV during tilt test [17]. The method
ssumes that the instantaneous ACF of the HRV can be decomposed,
t each time instant, as a sum of damped sinusoids from which the
nstantaneous frequency and power of the LF and HF components
re derived. The methods are presented in Section 2, the simula-
ion study and the exercise stress testing database in Section 3, the
esults in Section 4 and, finally, a discussion is found in Section 5.

. Methods

The estimation of the instantaneous frequency and power of the
RV components is performed in three steps: (i) the computation
f the windowed and filtered instantaneous ACF of the HRV analytic
ignal, (ii) its parametric decomposition to obtain the instantaneous
mplitude and frequency of the HRV components, and (iii) the esti-
ation of the instantaneous frequency and power of the LF and HF

omponents. The inclusion of respiratory information will be con-
idered for: (i) adapting the time smoothing window that filters the
CF in order to make estimation errors independent of the rate of
ariation of respiratory frequency, (ii) constraining the decompo-
ition of the instantaneous ACF in order to reduce the estimation
rror, and (iii) dynamic definition of the HF band in order to con-
ider respiratory frequencies that may be outside the standard HF
and. The method is described by the block diagram shown in Fig. 1.

.1. Model of heart rate variability during stress testing
Heart rate variability may be modeled as a sum of two or more
inusoids whose frequencies vary linearly in time [17]. During
tress testing, the LF and HF components are represented by two
inusoids which are embedded in additive white Gaussian noise
ing and Control 5 (2010) 299–310

(AWGN). The analytic HRV signal x(n) may be modeled as

x(n) = ALF(n)ej2�fLFn + AHF(n)ej2�(˛n2+ˇn) + v(n). (1)

The LF component is defined by the amplitude ALF(n) and the dis-
crete frequency fLF, assumed to be constant during the stress test.
The HF component is defined by the amplitude AHF(n) and the
instantaneous discrete frequency fHF(n) = 2˛n + ˇ, where 2˛ rep-
resents the slope of fHF(n) and ˇ the intercept; thus, the frequency
is assumed to increase linearly with work load until peak stress
and then decrease linearly during recovery [25,30]. The discrete
frequencies are related to the analog frequencies through the sam-
pling rate Fs (FLF = fLFFs, FHF = fHFFs, respectively). The term v(n)
represents the analytic signal of the AWGN, which accounts for
jitter in the QRS fiducial point as well as for modeling inaccuracies.

It is assumed that the variations in the LF and HF amplitudes
are slow compared to the LF and HF oscillations, respectively, so
that the “quasi-stationary” condition is fulfilled [31]. As a result,
the model in (1) can be simplified so that, locally, ALF(n) � ALF and
AHF(n) � AHF.

The VLF component is not considered in this model since it can-
not be estimated during stress testing.

2.2. The instantaneous autocorrelation function

The discrete SPWVD of a real-valued discrete-time signal, whose
analytic version is x(n), is defined by [32,33,31]

Px(n, m) = 2
K−1∑

k=−K+1

|h(k)|2
[

N−1∑
n′=−N+1

g(n′)x(n + n′ + k)x∗(n + n′ − k)

]

× e−j2�(m/M)k; m = −M + 1, . . . , M, (2)

where n and m are the time and frequency indices, respectively.
The term g(n′) is a symmetric time smoothing window of length
2N − 1. The term |h(k)|2 is a symmetric frequency smoothing win-
dow of length 2K − 1 (2K − 1 < 2M). In order to conserve the
energy the time and frequency windows are normalized so that∑N−1

n′=−N+1g(n′) = 1 and |h(0)|2 = 1, respectively.
The distribution Px(n, m/2) can be viewed as the discrete Fourier

transform of rx(n, k), which is the instantaneous ACF x(n + k)x∗(n −
k) filtered by g(n′) and windowed by |h(k)|2,

rx(n, k) = |h(k)|2
[

N−1∑
n′=−N+1

g(n′)x(n + n′ + k)x∗(n + n′ − k)

]
. (3)

We will now derive the ACF for the model in (1). The instantaneous
ACF of x(n) is given by

x(n + k)x∗(n − k) = |ALF|2ej2�fLF2k + |AHF|2ej2�fHF(n)2k

+ 2R{ALFA∗
HF} cos

[
2�(˛(n2 + k2) + (ˇ − fLF)n)

]
× ej2�(fLF+fHF(n))k + w(n + k)w∗(n − k),

(4)

where the term w(n + k)w∗(n − k) accounts for all the noise con-
tributions, including v(n + k)v∗(n − k) as well as the cross products
between the signal components and the noise. Using a rectangular
window for time smoothing [17]

g(n′) =
{ 1

2N − 1
, n′ = −N + 1, . . . , N − 1

0, otherwise,
(5)
and an exponential window for frequency smoothing

|h(k)|2 =
{

e−� |k|, k = −K + 1, . . . , K − 1
0, otherwise,

(6)
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ig. 1. Block diagram of the method for HRV analysis, where x(n) stands for the ana
re the instantaneous amplitude and frequency of the HRV components, and P̂LF(n
omponents, respectively.

he windowed and filtered ACF rx(n, k) becomes (see Appendix A
or derivation)

rx(n, k) = |ALF|2e−� |k|ej2�fLF2k + 1
2N − 1

|AHF|2e−� |k| sin(2�2˛(2N − 1)k)
sin(2�2˛k)

ej2�fHF(n)2k

+ 1
2N − 1

2R{ALFA∗
HF}e−� |k|

(
N−1∑

n′=−N+1

c(n, n′, k)ej2�2˛n′k

)

× ej2�(fLF+fHF(n))k + rw(n, k).

(7)

ue to time smoothing, the amplitude and bandwidth of the HF
omponent depend on 2˛ and 2N − 1 (see (7)). Note that the ampli-
ude of the cross term can be considerably reduced by proper
election of 2N − 1. In Fig. 2, Px(n, m) is displayed for two time
nstants n1 and n2 with identical instantaneous frequency but with
|˛2| > 2|˛1|. The HF peak at n1 is higher and narrower than the
ne at n2.

.3. Parameter estimation

The estimation of FLF(n), ALF(n), FHF(n), and AHF(n) is addressed
y the parametric decomposition of rx(n, k) in (7)[17], which can be
ecomposed for each time instant n into a sum of complex damped
inusoids plus noise. In fact, the term related to the LF component
s in itself a complex damped sinusoid, whereas the term related
o the HF component can be approximated by a complex damped
inusoid provided that the damping parameter � is large enough
o attenuate the lobes of the term sin(2�2˛(2N − 1)k)/ sin(2�2˛k);
he interference term is assumed to be small, as illustrated in Fig. 2,
ue to the use of (5) and (6), and is included in the noise term. Note
hat, although the parameters FLF, ALF and AHF have been assumed
onstant for the derivation of rx(n, k), their estimation is made
ependent on n since they are estimated for each time instant.

The function rx(n, k) is assumed to consist of a time-varying
umber I(n) of complex damped sinusoids corrupted by AWGN

(n, k),

x(n, k)=
I(n)∑
i=1

Ci(n)e(−�i(n)+jωi(n))k + u(n, k), k = 0, 1, . . . , K − 1, (8)

ig. 2. The SPWVD Px(n, m) for two time instants, n1 (solid line) corresponds
o 250 s, and n2 (dashed line) corresponds to 817 s, such as FLF(n1) = FLF(n2) =
.1 Hz, FHF(n1) = FHF(n2) = 0.42 Hz, 2|˛1|Fs = 1.67 × 10−4 Hz/s and 2|˛2|Fs = 5.00 ×
0−4 Hz/s. Note the reduced amplitude of the interference terms.
RV signal, rx(n, k) is the windowed and filtered instantaneous ACF, Âi(n) and F̂i(n)
n), P̂HF(n) and F̂HF(n) are the instantaneous power and frequency of the LF and HF

where u(n, k) includes the noise term rv(n, k), the interference term
(i.e., third term in (7)), and modeling inaccuracies. Once the param-
eters ωi(n) and Ci(n) of the I(n) complex damped sinusoids are
estimated, the instantaneous amplitude and frequency of LF and HF
components can be derived. Note that I(n) = 2 for all time instants
when the model in (1) is assumed. However, a time-varying num-
ber of sinusoids I(n) is considered so as to account for the fact that
more than two components usually exist in HRV signals. For exam-
ple, a pedalling component is sometimes present in stress testing
in addition to the LF and HF components [34].

The parameters Ci(n), �i(n) and ωi(n) are estimated using a
suboptimal least-squares (LS) approach in which the properties
of a prediction error filter polynomial Bn(z) = 1 + b(n, 1)z−1 +
b(n, 2)z−2 + . . . + b(n, P)z−P are explored [35]. In the absence of
noise the following linear prediction equation of order P should
be fulfilled,

Rx(n)b(n) = −rx(n), (9)

where

Rx(n) =

⎡
⎢⎢⎢⎢⎣

r∗
x (n, 1) r∗

x (n, 2) . . . r∗
x (n, P)

r∗
x (n, 2) r∗

x (n, 3) . . . r∗
x (n, P + 1)

...
...

...

r∗
x (n, K − P) r∗

x (n, K − P + 1) . . . r∗
x (n, K − 1)

⎤
⎥⎥⎥⎥⎦ (10)

b(n) = [b(n, 1)b(n, 2) . . . b(n, P)]T ,

rx(n) = [r∗
x (n, 0)r∗

x (n, 1) . . . r∗
x (n, K − P − 1)]T .

It can be shown that, in the absence of noise, Bn(z) has zeros at
zi(n) = e(�i(n)+jωi(n)), if P is chosen so as to satisfy I(n) ≤ P ≤ K − I(n)
[36].

In the presence of noisy data b(n) can be estimated in the LS
sense by minimizing

Jn = (rx(n) + Rx(n)b(n))H(rx(n) + Rx(n)b(n)), (11)

resulting in

b̂(n) = −(RH
x (n)Rx(n))

−1
RH

x (n)rx(n). (12)

The inaccuracies in b̂(n) introduced by the presence of the noise
u(n, k) can be alleviated by substituting Rx(n) with its truncated
singular value decomposition (SVD) R̂x(n), where the smallest sin-
gular values of Rx(n) are set to zero [35]. In this study the singular
values smaller than 10% of the largest singular value are set to zero
and, accordingly, the number of complex damped sinusoids I(n) can
be estimated directly as the rank of R̂x(n).

The parameters �i(n) and ωi(n) can be derived from the zeros of
Bn(z),
�i(n) = R{ln(zi(n))}, ωi(n) = I{ln(zi(n))}, (13)

and, after replacing their estimates in (8), the parameters Ci(n) can
be obtained as the LS solution of the linear system. Then, the ampli-
tude and frequency of the complex sinusoids of x(n) can be obtained
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s

i(n) = 1
2

ωi(n)
2�

Fs, Ai(n) =
√

|Ci(n)|. (14)

he LF and HF components can be chosen as the two sinusoids with
ighest power whose estimated frequency F̂i(n) lies in the LF and
F band, respectively.

ˆLF(n) = argmaxFi ∈ �LF
Ai(n), ÂLF(n) = maxFi ∈ �LF

Ai(n), (15)

ˆHF(n) = argmaxFi ∈ �HF
Ai(n), ÂHF(n) = maxFi ∈ �HF

Ai(n), (16)

here �LF and �HF represent the LF and HF bands, respectively,
efined in Section 2.6. The instantaneous power of the LF and HF

omponents can be estimated as P̂LF(n) = Â
2
LF(n)/2 and P̂HF(n) =

ˆ2
HF(n)/2, respectively.

.4. Inclusion of information on respiratory frequency

It is now assumed that FHF(n) can be approximated by the res-
iratory frequency. Then, respiratory information can be included

n the estimation of the HRV components. Suppose that the zero of
he prediction error filter polynomial associated with the HF com-
onent, zHF(n), is known (see later for details), then the estimation
f b(n) can be solved as a constrained LS problem. Since zHF(n) is
zero of Bn(z) it holds that Bn(zHF) = 1 + b(n, 1)z−1

HF + b(n, 2)z−2
HF +

. . + b(n, P)z−P
HF = 0, so the constraint can be expressed as

(b(n)) = bT (n)zHF(n) + 1 = 0, (17)

here zHF(n) =
[
z−1

HF (n), z−2
HF (n), . . . , z−P

HF (n)
]T

. The constrained LS
roblem can be solved by using Lagrange multipliers; the function
o be minimized is

Jc,n = Jn + R
{

c(b(n))�∗} . (18)

he constrained LS estimator is given by (see Appendix B for deriva-
ion)

b̂c(n) = b̂(n) −
(

b̂
T
(n)zHF(n) + 1

)(
zH

HF(n)

[(
RH

x (n)Rx(n)
)−1
]T

zHF(n)

)−1

×
(

RH
x (n)Rx(n)

)−1
z∗

HF(n).

(19)

n order to apply (19), knowledge of the zero zHF(n) =
�HF(n)+j2�2fHF(n) is required which, in turn, requires knowledge of
he instantaneous frequency fHF(n), being approximated by the
espiratory frequency fr(n), and the damping factor �HF(n) whose
stimation is described in the following. We start by recalling the
F component from (7) and (8)

1
2N − 1

|AHF|2e−� |k| sin(2�2˛(2N − 1)k)
sin(2�2˛k)

ej2�fHF(n)2k

� CHF(n)e−�HF(n)kejωHF(n)2k. (20)

ne approach is to approximate the envelope (1/(2N −
))(sin(2�2˛(2N − 1)k))/(sin(2�2˛k)) by an exponential fit
−ı|k|. The periodicity due to the term sin(2�2˛k) makes the
pproximation valid only if 2�2|˛|k < �/2, i.e. 8|˛|k < 1. If
|k| � 1, the exponential fit can be approximated by a linear fit
−ı|k| � 1 − ı|k|. The fitting is performed in a window of length 1/�
here it can be assumed that ı|k| � 1 with a proper selection of

he parameter � . Finally, the damping factor can be approximated

y �HF(n) � � + ı(n), where ı depends on n as 2˛ can also depend
n n. The goodness of this approximation is a function of the value
f 2˛, which will be compensated for later (see Section 2.5).

The respiratory information consists of frequency fr(n) and rate
f variation 2˛(n), so both parameters have to be estimated. In
ing and Control 5 (2010) 299–310

practice, the instantaneous rate of variation is estimated by the
regressive differences

2 ˆ̨ (n) = f̂r(n) − f̂r(n − 1), (21)

where f̂r(n) is the respiratory frequency estimate.

2.5. Time window adaptation

2.5.1. Varying length of the rectangular time window
The amplitude and bandwidth of the HF peak depend on 2˛,

causing estimation errors which also depend on 2˛ through the
approximation of the damping factor described in Section 2.4. In
order to reduce this dependency, a time window g(n′) whose length
is a function of 2˛(n) is used. This is achieved by controlling the
lobes’ bandwidth of the envelope of the HF component in (7) by
keeping the term 2˛(2N − 1) constant for each n. The time-varying
time window length, 2N(n) − 1, is defined as

2N(n) − 1 = �

2| ˆ̨ (n)| , (22)

where � is a constant. Note that for each n a different length is
obtained in which the method assumes that the rate of variation is
constant (linearly varying frequencies). An upper limit is imposed
on 2N(n) − 1 to avoid very long windows, obtained mostly when
the respiratory frequency is almost constant, where 2 ˆ̨ (n) cannot
be approximated as constant in the whole window. The upper limit
is defined for each n as the maximum window length centered on n
in which the standard deviation of 2 ˆ̨ (n) is below a threshold 	u

2˛.
A lower limit of the window length is determined by the max-

imum value of 2˛, imposed by the restriction 8|˛|k < 1, given in
Section 2.4, which for the worst case is 2N(n) − 1 > 4�K . A note of
caution is warranted when the lower limit is not large enough to
attenuate the cross terms. In this application a window length of
approximately 9 s allows sufficient reduction of the cross terms.

2.5.2. Tuned time window
An approach to reduce the HF amplitude estimation errors is to

employ a time window such that the HF term of rx(n, k) (see (A.3)
in Appendix A) becomes a complex damped sinusoid itself, without
the need for approximations. This is achieved by choosing a time
window g(n′) such that,

N−1∑
n′=−N+1

g(n′)ej2�2˛n′2k = e−
(n)|2˛||2k|, (23)

where 
(n) is a positive arbitrary constant.
Assuming that the time window g(n′) is an even function, the

term on the left hand side can be viewed as the Fourier transform
G(�) of the discrete-time signal g(n′),

N−1∑
n′=−N+1

g(n′)e−j�n′ = G(�), (24)

evaluated at � = 2�4˛k. The transform G(�) is periodic with 2�
but if we force

G(�) = e−(
(n)/2�)|�|, −� ≤ � ≤ �, (25)

the time window g(n′) can be obtained as
g(n′) = 1
2�

∫ �

−�

G(�)ej�n′
d� = 2
(n)

(2�n′)2 + 
2(n)

× (1 − e−(
(n)/2) cos(�n′)). (26)
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hen 
(n) is sufficiently large (i.e. ≥ 10), G(�) becomes zero
round ±� and, therefore, g(n′) can be approximated by

(n′) � 2
(n)

(2�n′)2 + 
2(n)
. (27)

sing this window, referred to as tuned time window, rx(n, k)
ecomes, in a parallel way to (A.4)

rx(n, k) = |ALF|2KLFe−� |k|ej2�fLF2k + |AHF|2e−� |k|e−
(n)|2˛||2k|ej2�fHF(n)2k

+ 2R{ALFA∗
HF}e−� |k|

(
N−1∑

n′=−N+1

{
g(n′)c(n, n′, k)ej2�2˛n′k

})

× ej2�(fLF+fHF(n))k + e−� |k|

(
N−1∑

n′=−N+1

{
g(n′)w(n + n′ + k)w∗(n + n′ − k)

})
.

(28)

here KLF =
∑N−1

n′=−N+1g(n′) = G(0) = 1. In this case, the damp-
ng factor corresponding to the HF component is �HF(n) = � +
(n)2|2˛|.

Similar to the rectangular time window, the HF estimation
rrors can be made independent of 2˛ by keeping the term
(n)2|2˛| constant. The parameter 
(n) is defined as,

(n) = �

2 · 2| ˆ̨ (n)| , (29)

here � is a constant. An upper limit is imposed on 
(n) to avoid too
arge values (when the respiratory frequency is almost constant)

hich would mask the exponential behaviour of G(�). This upper
imit has been empirically set to K/2. The lower limit of 
(n) is set
o 10.

.6. Bands’ definition

In this study the LF band, �LF, follows the standard definition
0.04, 0.15] Hz. Two approaches are considered to define the HF
and, �HF: (1) the extended HF band ranges from 0.15 Hz to half
he mean HR so that it covers possible respiratory frequencies and
2) the dynamic HF band is centered on the respiratory frequency
nd has a bandwidth of 0.25 Hz (the lower limit of the dynamic HF
and cannot fall below 0.15 Hz).

. Materials

.1. Simulation study

Considering that HR can reach 200 bpm during stress testing, a

ampling rate of at least 3 Hz is implied. In this study a sampling
ate of Fs = 8 Hz is used, which is above the minimum sampling rate
o avoid aliasing when using the SPWVD.

In all simulations the analytic signal x(n) is defined as the sum
f two components: a fixed LF component at 0.1 Hz, and an HF

Fig. 3. The frequency FHF(n) (dashed-dotted line) and the amplitudes ALF(n)
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component whose frequency varies. Two approaches have been
considered to simulate the HF component:

LV (linear variation): The frequency FHF(n) increases and
decreases linearly, mimicing the behaviour observed during exer-
cise and recovery. A low-pass filter smooths the otherwise
non-physiological transition from exercise to recovery. This sim-
ulation is included because it corresponds exactly to the model
assumed in Section 2.1.

PV (physiological variation): The frequency FHF(n) is set to be the
respiratory frequency measured during stress testing using an air-
flow thermistor [37]. Note that the assumption of linearly varying
frequencies only needs to hold in the time interval comprised by
the time window g(n′), usually fulfilled during stress testing.

The amplitudes ALF(n) and AHF(n) are assumed to decrease lin-
early from the onset of exercise to peak stress and then to increase
linearly during recovery, modeling the behaviour of the sympa-
thetic and parasympathetic activity during exercise and recovery,
respectively [27,28,25]. The AHF(n) exhibits an increase when FHF(n)
reaches 60% of its total increase, modeling mechanical stretching of
the sinus node due to respiration [24,25]. The frequency FHF(n) and
amplitudes ALF(n) and AHF(n) of the simulated signals are displayed
in Fig. 3 for approaches LV and PV.

White Gaussian noise is added to the simulated HRV signals at a
signal-to-noise ratio (SNR) defined by the ratio between the power
of the LF component at the instant of maximum value (onset of the
trial) and the noise variance. Different SNRs from 0 to 30 dB in 5-dB
steps are considered. A total of 100 noise realizations are generated
for each SNR and simulated HRV signal.

An estimate of the SNR in HRV signals during stress testing may
be derived based on the literature and experimental observations.
In standing position, the order of the total power of a typical HRV
signal is 671 ms2, whereas the order of the power of the LF and HF
components is 308 and 95 ms2, respectively [1]. Noise in HRV sig-
nals is mainly due to jitter in the QRS fiducial point. Assuming that
the ECG signal is sampled with the rate Fecg , an error of a single
sample is 1/Fecg s. This error represents a noise power of approxi-
mately 1 ms2 for Fecg = 1000 Hz, 4 ms2 for Fecg = 500 Hz and 16 ms2

for Fecg = 250 Hz, and a SNR of approximately 25, 19, and 13 dB,
respectively.

3.2. Stress testing data

A database of standard 12-lead ECG and airflow respiratory
signals, simultaneously recorded during stress testing at the Uni-
versity Hospital of Lund, is studied. The database contains the
recordings of 14 volunteers and 20 patients referred for stress test-

ing. The ECG is sampled at 1 kHz and the respiratory signal at 50 Hz.
The stress test was performed on a bicycle ergometer whose work
load increased linearly each minute. The subjects were asked to
cycle at a rate of 60 rpm. A detailed description of the database is
given in [37].

(dashed line) and AHF(n) (solid line), for simulations (a) LV and (b) PV.
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Table 1
Parameter values.

Parameter 2M 2K − 1 � 2N − 1 � � 	u
2˛

Value 1024 1023 1/128 81 a 255 b 0.0133 0.0084 6.6667 × 10−6
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a Length of the rectangular time window.
b Length of the tuned time window.

First, QRS detection is performed using Aristotle[38]. Then, the
nstantaneous HR signal, dHR(n), is computed following a method
ased on the integral pulse frequency modulation model, which
ccounts for the presence of ectopic beats [39]. The HR signal is
esampled at a sampling rate of Fs = 8 Hz. A time-varying mean
R signal dHRM(n) is obtained by low-pass filtering the HR signal
ith a cut-off frequency of 0.03 Hz. The HRV signal dHRV(n) results

rom dHRV(n) = dHR(n) − dHRM(n). The HRV signal dHRV(n) is low-
ass filtered with a cut-off frequency of 0.9 Hz since a spurious 1-
z component is sometimes observed [26], being synchronous to
edalling at 60 rpm but most likely unrelated to parasympathetic
ctivity [34,40]. The respiratory frequency does not exceed 0.9 Hz
n any of the recordings of the database.

The respiratory frequency is estimated from the airflow signal by
pectral analysis [37]. The estimated respiratory frequency series

ˆr(n) is resampled at 8 Hz and low-pass filtered with a cut-off fre-
uency of 0.01 Hz to avoid non-physiological abrupt variations due
o estimation errors.
Four subjects were excluded from the study because dHR(n)
ontained too many artifacts or ectopic beats to obtain a reliable
stimation of the HRV signal based on a criterion adapted from [39],
nd one subject was excluded because of unattached electrodes.

ig. 4. Mean ± SD of the estimation error of AHF(n) in relative units (%) achieved by me
= 8, 12, 16 (white, gray, dark gray) and SNR of 5, 15, and 25 dB. Numerical values are gi
s Samples Hz/s

4. Results

4.1. Simulation study

The following methods are applied to the simulated HRV signals:
UCR: U nconstrained LS estimation using a C onstant length R

ectangular time window.
CVR: C onstrained LS estimation using a (2N(n) − 1)-V arying

length R ectangular time window.
CVT: C onstrained LS estimation using a T uned time window

with V arying factor 
(n).
Parameter values used are given in Table 1.
The estimated number of damped sinusoids, Î(n), is 2 during the

majority of the time for methods UCR, CVR and CVT and all model
orders considered, even for a SNR as low as 5 dB, due to the SVD
truncation of Rx(n).

The mean and standard deviation (SD) of the estimation errors
(in absolute value) are calculated for ÂLF(n), F̂LF(n), ÂHF(n), and

F̂HF(n), averaging 100 realizations for each SNR.

For all methods, F̂LF(n) and F̂HF(n) were associated with errors
lower than 0.002 ± 0.004 Hz (mean ± SD) even for an SNR as low as
15 dB and a model order as low as P = 8. The inclusion of informa-

thods UCR, CVR and CVT in simulations (a) LV and (b) PV. Results are shown for
ven for P = 8, 12, 16.
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Table 2
Results of the t-test applied to estimates ÂHF(n) obtained by methods UCR, CVR and
CVT. T% and p̄ stand for the percentage of time during which p <0.05 and the mean
p-value during that time, respectively, for simulation PV.

P T% (p̄)

UCR–CVR UCR–CVT CVR–CVT

(a) 25 dB
8 95 (6 × 10−4) 96 (5 × 10−4) 97 (2 × 10−4)
12 93 (6 × 10−4) 97 (3 × 10−4) 97 (3 × 10−4)
16 92 (7 × 10−4) 97 (3 × 10−4) 98 (2 × 10−4)

(b) 15 dB
8 85 (2 × 10−3) 83 (2 × 10−3) 94 (7 × 10−4)
12 83 (2 × 10−3) 86 (1 × 10−3) 94 (7 × 10−4)
16 80 (3 × 10−3) 89 (1 × 10−3) 94 (7 × 10−4)

(c) 5 dB
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8 66 (5 × 10−3) 56 (6 × 10−3) 80 (3 × 10−3)
12 72 (5 × 10−3) 48 (7 × 10−3) 79 (3 × 10−3)
16 64 (5 × 10−3) 41 (9 × 10−3) 79 (3 × 10−3)

ion on respiratory frequency mainly affects ÂHF(n). Fig. 4 presents
he estimation error of AHF(n) for the simulations LV and PV.

For simulation LV, Fig. 4(a) shows that the inclusion of respi-
atory information leads to a reduction of the estimation error
f AHF(n) at low SNRs, i.e., 15 and 5 dB, the smallest errors being
chieved when the tuned window is used. A reduction in SD is
chieved at the expense of a slight increase in mean for SNR of
5 dB. It is obvious from Fig. 4(a) that the estimation error does not
epend on P when respiratory information is included.

For simulation PV, Fig. 4(b) shows that respiratory information
gain leads to a reduction of the estimation error of AHF(n) for all
alues of SNR and P. It is noted that the estimation errors are smaller
han those obtained in simulation LV. It is also noted that the dif-
erences in estimation error between simulations LV and PV are the
mallest for CVT.

In order to test if estimates ÂHF(n) obtained by methods UCR,
VR and CVT are statistically significant, a two-sample t-test is
pplied to each of the 3 possible pairwise comparisons for each
ime instant n. The percentage of the total time, T%, during which
stimates ÂHF(n), are statistically significant (p-value<0.05) is dis-
layed in Table 2, as well as the mean p-value during that time, p̄,
or simulation PV. It can be observed that estimates ÂHF(n) obtained

y UCR, CVR and CVT are significantly different from each other
uring most of the time and with a small mean p-value (T% ≥ 92%
nd p̄ ≤ 7 × 10−4 for all model orders) for a SNR of 25 dB. For lower
NRs, lower values of T% as well as higher values of p̄ are observed,
ainly due to the increase in the SD of the estimates. However esti-

ig. 5. (a) Simulated HRV signal R{x(n)}, (b) F̂LF(n) (dashed line) and F̂HF(n) (dotted line), (
SNR of 15 dB. See Fig. 3 for original trends.
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mates ÂHF(n) obtained by CVR and CVT are significantly different
during at least 80% of the total time (p̄ ≤ 3 × 10−3) even for a SNR of
5 dB.

The estimation error of ÂLF(n) is similar to that of ÂHF(n) when
respiratory information is not included in the estimation of ÂHF(n)
(results not displayed), always that the model order is high enough.

Fig. 5 displays the simulated signal and the corresponding
estimates F̂LF(n), F̂HF(n), ÂLF(n), and ÂHF(n), obtained by CVT for
simulation PV.

4.2. Stress testing data

The methods UCR and CVT are applied to the stress testing HRV
signals, using parameter values identical to those in the simula-
tions, see Table 1. The standard HF band and the extended HF band
are used with UCR because no respiratory information is included,
whereas the dynamic HF band is used with CVT.

The signals dHR(n) and dHRV(n) are displayed in Fig. 6(a) and
(b), respectively, for a volunteer of the present database. The non-
stationary nature of dHR(n) can be appreciated not only in its trend,
which increases approximately linearly from onset to peak stress
and decreases abruptly during recovery, but also in dHRV(n) with its
progressive diminution of HRV from onset to peak stress and then
its abrupt increase during recovery. The corresponding Px(n, m) is
computed using UCR and CVT and displayed in Fig. 6(c) and (d),
respectively.

Fig. 7 displays the corresponding F̂LF(n), P̂LF(n), F̂HF(n), and P̂HF(n)
obtained with UCR, using either the standard or the extended HF
band, and CVT, using the dynamic HF band.

For stress testing data, a lower value of P is preferred than for
simulated data so as to obtain smoother estimates when the LF
and HF bands do not exhibit a dominant peak. Due to the SVD
truncation of Rx(n), the estimated number of damped sinusoids
Î(n) equals 1 approximately 80% of the time, and 2 the 20% left.
However, if a less restrictive SVD truncation is considered, the Î(n)
increases significantly even for low model orders, making it diffi-
cult the identification of the LF and HF components. Note that when
the respiratory frequency exceeds 0.4 Hz from about 400 to 700 s,
the standard HF band leads to misestimation of the HF component
(see Fig. 7(a)). This problem is avoided when either UCR, using the
extended HF band (Fig. 7(b)), or CVT, using the dynamic HF band

(Fig. 7(c)), is employed. In that case CVT leads to smoother esti-
mates P̂HF(n) than does UCR. In order to quantify the smoothness
of the estimate P̂HF(n), the SD around a mean trend, obtained by
low-pass filtering of P̂HF(n) with a cut-off frequency of 0.01 Hz, is
computed. This value is averaged among the 30 recordings of the

c) ÂLF(n), and (d) ÂHF(n), estimated using method CVT, for a model order P = 16 and
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ig. 6. (a) Instantaneous HR signal dHR(n), (b) HRV signal dHRV(n), and the SPWVD
.2.

atabase, yielding a mean ± SD of 0.74 × 10−3 ± 1.03 × 10−3 s−2

or UCR and of 0.12 × 10−3 ± 0.18 × 10−3 s−2 for CVT.
Fig. 7(b) shows trends which are similar to those in Fig. 7(c).

he F̂LF(n) varies slightly around 0.08 Hz during the whole test,
hile the F̂HF(n) increases from onset to peak stress and decreases
uring recovery. The trend P̂LF(n) shows a rapid decrease at the
eginning of exercise, reaching a plateau which is maintained until
pproximately 100 s before the peak stress, when P̂LF(n) is almost
uppressed. During recovery, the initial abrupt increase in P̂LF(n) is
ollowed by a progressive return to the value at the beginning of
he exercise. The P̂HF(n) is decreased from onset to peak stress, but
ˆHF(n) is not suppressed around the peak stress. During the recov-
ry there is an increase in P̂HF(n), less steep than in P̂LF(n), before
eturning to its value at the beginning of the exercise.

To test the hypothesis that the differences between P̂HF(n)

btained by UCR (with the extended HF band) and CVT are sta-
istically significant, a one-sample t-test is applied for each time
nstant n to the 14 volunteers of the database. The percentage of
he total time during which differences are statistically significant
p-value<0.05) is T% = 25%, and the mean p-value during that time is

ig. 7. The frequency trends F̂LF(n) and F̂HF(n) (top), P̂LF(n) (middle), and P̂HF(n) (bottom)
nd dynamic HF band. The model order is P = 8. Stress peak is marked with a dashed line
) using methods (c) UCR and (d) CVT for a volunteer from the database of Section

p̄ = 0.01. Since statistical significance is highly affected by the num-
ber of realizations (14 in this case), and to make statistical results
comparable to those in the simulation study (100 realizations), the
t-test is also applied to a total of 98 realizations, obtained by repli-
cating results from the 14 volunteers, yielding statistical values of
T% = 66% and p̄ = 0.005.

Fig. 8 displays the mean ± SD of the parameters F̂LF(n), P̂LF(n),
F̂HF(n), and P̂HF(n), estimated using CVT and evaluated at differ-
ent time instants during the stress test and averaged for the 14
volunteers. The time instants considered are: the first minute of
exercise (n1), 3 min before the peak stress (n2), 1 min before the
peak stress (n3), 1 min after the peak stress (n4) and 3 min after
the peak stress (n5). At each time instant, the parameter value is
obtained by averaging the trend in a 1-s window.

Fig. 8 demonstrates that the over-all characteristics of the HRV

trends of the 14 volunteers resemble those observed for the vol-
unteer of Fig. 7. However, a large variability among subjects is
observed in P̂LF(n) and P̂HF(n), especially at n5, which may reflect
the large intersubject variability that exists in HRV signals [4],
especially during the recovery. To test the hypothesis that the dif-

, using (a) UCR and standard HF band, (b) UCR and extended HF band, and (c) CVT
.
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Fig. 8. Mean ± SD among the 14 volunteers of the parameters (a) F̂LF(n), (b) P̂LF(n), (c) F̂HF(n
n2 (3 min before the peak stress), n3 (1 min before the peak stress), n4 (1 min after the pea

Table 3
The p-value obtained by the Wilcoxon signed rank test. The time instants are n1 (the
first minute of exercise), n2 (3 min before the peak stress), n3 (1 min before the peak
stress), n4 (1 min after the peak stress) and n5 (3 min after the peak stress).

F̂HF(n) n2 n3 n4 n5

n1 0.0023 0.0017 0.0012 0.3910
n2 – 0.1938 0.1937 0.0052
n3 – – 0.0203 0.0052
n4 – – – 0.0040

P̂LF(n) n2 n3 n4 n5

n1 0.0007 0.0024 0.1189 0.4548
n2 – 0.1016 0.0007 0.1763
n3 – – 0.0005 0.0137
n4 – – – 0.0171

P̂HF(n) n2 n3 n4 n5

n1 0.0001 0.0001 * 0.0580
n2 – 0.9515 0.0012 0.0012
n3 – – 0.0031 0.0009
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It is assumed that the HRV signal during stress testing can be
n4 – – – 0.1937

* p > 0.05.

erences of HRV parameters between two time instants has zero
edian, a Wilcoxon signed rank test is applied to the 10 possi-

le pair-wise comparisons of the 5 different time instants for each
arameter (F̂LF(n), P̂LF(n), F̂HF(n), and P̂HF(n)). The significance level
p-value) at which the null hypothesis of differences with zero

edian can be rejected is displayed in Tab. 3. Results are not shown
or F̂LF(n) since only the comparison F̂LF(n3) − F̂LF(n5) obtained a
ignificant p-value of 0.0137.

. Discussion

.1. Methodological aspects

In this paper the analysis of non-stationary HRV signals dur-
ng stress testing is addressed by parametric decomposition of the

indowed and filtered instantaneous ACF on which the SPWVD
s based. The advantage of using a parametric decomposition of
he instantaneous ACF is that information such as respiratory fre-
uency can be included in the model. Respiratory information is
ot necessarily obtained from a simultaneously recorded respira-
ion signal but can also be derived from the ECG signal using, e.g.,
he method described in [37], which has been shown to provide
eliable respiratory frequency estimates during stress testing (with
mean error of 0.022 ± 0.016 Hz in a database of 29 subjects). The

nclusion of respiratory information mainly affects the estimation
f the amplitude of the HF component.
The inclusion of respiratory information in the definition of the
ime window makes estimation errors independent of the rate of
ariation of the respiratory frequency. This leads to shorter averag-
ng for higher rates of variation, which results in less reduction of
he cross terms and the noise. As a consequence, in benefit of the
), and (d) P̂HF(n), estimated by CVT and evaluated at n1 (the first minute of exercise),
k stress), and n5 (3 min after the peak stress).

tracking of faster variations, estimation errors may be larger in the
presence of high levels of noise.

The inclusion of respiratory frequency information as a con-
straint in the LS estimation leads to a reduction in both the mean
and SD of the estimation error of the HF amplitude. This reduction
depends on the time window used and on the SNR, and turns out
to be larger when the tuned window is used or when lower SNRs
are analyzed. For example, when the frequency of the HF compo-
nent follows a real respiratory frequency, a reduction in mean from
3.5% to 2.4%, and in SD from 3.0% to 1.7%, is achieved using the
tuned window for a SNR of 15 dB. For a real respiratory frequency
similar results were obtained for both the tuned and the rectangu-
lar window. Estimation errors for a linearly varying HF frequency
are, in general, larger than for a real respiratory frequency, and the
reduction in the estimation error using a tuned window instead of
a rectangular window is more evident for a linearly varying HF fre-
quency than for a real respiratory frequency. These results may be
due to the fact that the rate of variation is slower for the simulation
with a real respiratory frequency. Estimation errors obtained with
the tuned window are similar for both situations, thus pointing to
another advantage of the tuned window. Results from the stress
testing database show that the inclusion of respiratory informa-
tion as a constraint in the LS estimation (using the tuned window)
leads to smoother trends of the power of the HF component.

The inclusion of respiratory information in the HF band defini-
tion accounts for the fact that respiratory frequency is not restricted
to the standard HF band during stress testing. In Fig. 7, it is shown
that the use of the standard HF band would have yielded a misesti-
mation of the HF component, which incorrectly can be interpreted
as a suppression of the parasympathetic activity. If respiratory
information is not available, this can be avoided using an extended
HF band [0.15, dHRM(n)/2] Hz [9,13]. In that case, care should be
taken since other HF components unrelated to the parasympathetic
activity can be merged with the respiration-related HF component
(e.g. a component synchronous with the pedalling frequency [26]).

A proper selection of the time and frequency windows of the
SPWVD should guarantee the reduction of the interference terms,
and the decomposition of the windowed and filtered ACF as a sum
of complex damped sinusoids. In this paper, an exponential win-
dow is used for frequency smoothing, and either a rectangular or
a tuned window for time smoothing; other types of windows have
been proposed for the analysis of HRV [15,16]. A prospective study
on a larger database would be needed to obtain the most suitable
values for the parameters. An alternative to reduce the interference
terms could have been filtering the signal in the LF and HF bands
and applying the proposed method in each band to estimate the LF
and HF components separately. However, this would have required
proper cut-off frequencies selection, with a particular risk when the
LF and HF bands are time-varying.
modeled as a sum of two sinusoids for which the frequency of the
HF component varies linearly over time. While the assumption of
a linearly varying HF frequency may seem drastic, it only needs to
hold in the interval extended by the time window. The frequency
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f the LF component can also vary during stress testing, however,
ts variation is much smaller than that of the HF component and
t is therefore assumed to be constant. Even if the amplitudes of
he LF and HF components can vary during stress testing, in the
erivation of the windowed and filtered ACF they are assumed to
e constant in the interval extended by the time window, given
hat their variations are assumed to be slow compared with the LF
nd HF frequencies so that the “quasi-stationary” condition is ful-
lled [31]. Although the simulated signals generated to assess the
erformance of the method deviate from the assumed model in the
ense that they include time-varying amplitudes for the LF and HF
omponents and an HF frequency which follows a real respiratory
requency evolution during stress testing (no linearly varying as in
he model), the simulated HRV signals are not able to represent the
seudo-stochastic nature of HRV signals, nor the nonlinear dynam-

cs which may be involved in the regulation of the ANS on the heart
4]. An improved generator of synthetic HRV signals is needed to
ssess the performance of the method in real-life stress testing HRV
ignals [19]. Even with such synthetic HRV signals available, the
valuation on real stress testing HRV signals will still be of limited
alue as no reference “true” signal exists.

Assuming the same model for the HRV signal during stress
esting, alternative approaches such as maximum likelihood esti-

ation or noise subspace methods can be considered. The main
imitation of these methods is that they assume the stationarity of
he signal, in contrast to TF methods, so they need to be applied
n short time windows in which the signal can be considered sta-
ionary. Different methods for the analysis of non-stationary HRV
ignals have been proposed in the literature. In [8] an extensive
verview of methods for the continuous quantification of the LF
nd HF components in non-stationary HRV signals is presented,
here advantages and limitations of the different approaches are
ighlighted. A comparison between the methods is unfortunately
ot straightforward, since different approaches to TF representa-
ion and HRV parameter estimation can be taken. For example,
ime-varying autoregressive analysis comes with the selection of
stimation method for the time-varying coefficients and model
rder. Although spectral decomposition can be used for frequency
nd power estimation of the spectral components, a criterion
s needed for the identification and tracking of the LF and HF
omponents. Time-varying autoregressive analysis offers accurate
requency estimation but less accurate power estimation, espe-
ially when rapid changes occur [16,19] and when poles are close to
he unit circle [8] as may be the case during stress testing. Wavelet
nalysis has also been used for the analysis of non-stationary HRV
ignals, however, as pointed out in [8], power computation may be
roblematic when scales and bands do not properly match or when
ore than one spectral component is present at a given scale, which
ay be the case during stress testing when respiratory frequency

xhibits a large variation or when the component synchronous
ith the pedaling frequency is present [26]. The instantaneous
ower of the LF and HF components could have been alternatively
stimated by integration of the SPWVD in the LF and HF bands,
espectively. However, these estimates are affected by the time
nd frequency smoothing windows, whose effect is diminished
y the parametric decomposition described in this paper, which
lso allows the inclusion of respiratory frequency information. The
ethod described in this paper has been selected based on the

ppropriate TF resolution of the SPWVD and, especially, on the
ossibility of including respiration information, as proposed in this
aper.
.2. Physiological aspects

From analysis of the stress testing database (see Figs. 7 and 8)
progressive reduction of the LF power can be observed as the
ing and Control 5 (2010) 299–310

stress level increases, when the sympathetic activity is thought
to increase also, becoming nearly abolished when peak stress is
reached [27,28,41]. This would suggest either that the LF power
is not a valid marker of the sympathetic activity, at least during
exercise [42,43,29,4], or that some kind of saturation prevents the
LF power to increase at the rate of the sympathetic stimulation.
In the recovery phase there is an abrupt increase in the LF power
which may be due to sympathetic activity or a rapid decrease in
HR, which leaks in the LF band. The HF power is also reduced from
the beginning of the exercise, which might reflect withdrawal of
parasympathetic activity [27,28,4], which would allow the HR to
increase and satisfy the increasing metabolic demand. While some
consider HF power as a valid marker of parasympathetic activity
during exercise [29], it is not always suppressed near peak stress
when the parasympathetic activity is inhibited. This suggests the
existence of a non-neural mechanism which causes mechanical
stretching of the sinus node due to respiration [24,25]. However, in
the recordings analyzed in Figs. 7 and 8, this effect is not so evident.
The reason may be that the recordings come from volunteers, who
perform a submaximal exercise stress test (up to a rate of perceived
exertion (RPE) of 15 out of 20 on the Borg scale) [37]. Finally, the HF
power increases in the recovery phase when the parasympathetic
activity is supposed to be reestablished. In Figs. 7 and 8, it can be
appreciated that the values of the LF and HF powers are different
at the beginning and at the end of the stress testing. This might be
due to the different body position at the beginning (sitting, sympa-
thetic dominance) and at the end of the test (lying, parasympathetic
dominance).

A hypothesis of this work is that the frequency of the HF compo-
nent coincides with respiratory frequency. However, a reduction in
the spectral coherence between the HRV and the respiration signal
in the HF band in the last part of the exercise has been reported
[44]. The coherence information may be also included in the HRV
parameter estimation in a further study.

Finally, an important point to be discussed in the framework of
this study is the use of the HRV analysis as a tool to assess changes
in ANS during stress testing. It is generally accepted that HRV can be
considered as a noninvasive measure of the ANS activity in station-
ary conditions [1]. The underlying assumption is that mean heart
rate and respiratory frequency and air flow volume are stationary.
During stress testing both the respiratory frequency and the air flow
volume vary, yielding variations in the HF power which may be
unrelated to the parasympathetic activity. Moreover, during stress
testing the time-varying mean heart rate may obscure the inter-
pretation of the evolution of the sympathetic and parasympathetic
activity based on the LF and HF power estimates.

6. Conclusions

In this paper a novel method for the time-varying analysis of
HRV during exercise stress testing including information on respi-
ratory frequency has been presented. Respiratory information has
been included in different parts of the analysis: in the definition of
a dynamic HF band centered on the respiratory frequency, in the
design of the time window based on the rate of variation of the
respiratory frequency, and in the parametric decomposition as a
constraint. Results from both the simulation study and the stress
testing database show that the inclusion of respiratory information
provides more robust estimates of the HF component in terms of
mean errors and SD. The application of this technique to the stress

testing database evidences a significant decrease in the power of
both the LF and HF components in the vicinity of peak stress with
respect to both the beginning of the exercise and the recovery. This
technique can be employed to assess the, still debated, relation-
ships between ANS control and exercise stress.
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ppendix A.

Derivation of the windowed and filtered ACF in (3) when the
ectangular window g(n′) in (5) is used for time smoothing and the
xponential window |h(k)|2 in (6) is used for frequency smoothing:

rx(n, k) = |h(k)|2
[

N−1∑
n′=−N+1

g(n′)x(n + n′ + k)x∗(n + n′ + k)

]

= e−� |k| 1
2N − 1

N−1∑
n′=−N+1

(
|ALF|2ej2�fLF2k +|AHF|2ej2�(2˛(n+n′)+ˇ)2k

+ 2R{ALFA∗
HF}c(n, n′, k) ej2�(fLF+2˛(n+n′)+ˇ)k

+w(n + n′ + k)w∗(n + n′ − k)) ,
(A.1)

here

(n, n′, k) = cos[2�{˛[(n + n′)2 + k2] + (ˇ − fLF)(n + n′)}]. (A.2)

q. (A.1) becomes

rx(n, k) = |ALF|2e−� |k|ej2�fLF2k + 1
2N − 1

|AHF|2e−� |k|

(
N−1∑

n′=−N+1

ej2�2˛n′2k

)
ej2�(2˛n+ˇ)2k

+ 1
2N − 1

2R{ALFA∗
HF}e−� |k|

(
N−1∑

n′=−N+1

c(n, n′, k)ej2�2˛n′k

)
ej2�(fLF+2˛n+ˇ)k

+ 1
2N − 1

e−� |k|

(
N−1∑

n′=−N+1

w(n + n′ + k)w∗(n + n′ − k)

)
.

(A.3)

inally

rx(n, k) = |ALF|2e−� |k|ej2�fLF2k + 1
2N − 1

|AHF|2e−� |k| sin(2�2˛(2N − 1)k)
sin(2�2˛k)

ej2�fHF(n)2k

+ 1
2N − 1

2R{ALFA∗
HF}e−� |k|

(
N−1∑

n′=−N+1

c(n, n′, k)ej2�2˛n′k

)

× ej2�(fLF+fHF(n))k

+ rw(n, k),
(A.4)

here

w(n, k) = 1
2N − 1

e−� |k|

(
N−1∑

n′=−N+1

w(n + n′ + k)w∗(n + n′ − k)

)
.

(A.5)

ppendix B.

Derivation of the constrained LS estimator of (18) using

agrange multipliers. Taking the derivative of (18) with respect to
∗(n) and setting it equal to zero yields

∂Jc,n

∂b∗(n)
= RH

x (n)rx(n) + RH
x (n)Rx(n)b(n) + 1

2
�z∗

HF(n) = 0. (B.1)
[
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The constrained LS estimator of b(n) is given by

b̂c(n) = b̂(n) − 1
2

�
(

RH
x (n)Rx(n)

)−1
z∗

HF(n). (B.2)

Substituting (B.2) in (17), the Lagrange multiplier � can be found,

�=2[b̂
T
(n)zHF(n)+1]

(
zH

HF(n)
[(

RH
x (n)Rx(n)

)−1
]T

zHF(n)

)−1

, (B.3)

and finally,

b̂c(n) = b̂(n) −
(

b̂
T
(n)zHF(n) + 1

)(
zH

HF(n)

[(
RH

x (n)Rx(n)
)−1
]T

zHF(n)

)−1

×
(

RH
x (n)Rx(n)

)−1
z∗

HF(n). (B.4)
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