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Model-Based Detection of Heart Rate Turbulence
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Abstract—A generalized likelihood ratio test (GLRT) statistic is
proposed for detection of heart rate turbulence (HRT), where a
set of Karhunen–Loève basis functions models HRT. The detec-
tor structure is based on the extended integral pulse frequency
modulation model that accounts for the presence of ectopic beats
and HRT. This new test statistic takes a priori information regard-
ing HRT shape into account, whereas our previously presented
GLRT detector relied solely on the energy contained in the signal
subspace. The spectral relationship between heart rate variability
(HRV) and HRT is investigated for the purpose of modeling HRV
“noise” present during the turbulence period, the results suggesting
that the white noise assumption is feasible to pursue. The perfor-
mance was studied for both simulated and real data, leading to
results which show that the new GLRT detector is superior to the
original one as well as to the commonly used parameter turbulence
slope (TS) on both types of data. Averaging ten ventricular ectopic
beats, the estimated detection probability of the new detector, the
previous detector, and TS were found to be 0.83, 0.35, and 0.41,
respectively, when the false alarm probability was held fixed at 0.1.

Index Terms—ECG, generalized likelihood ratio test (GLRT),
heart rate turbulence (HRT), integral pulse frequency modulation
(IPFM) model, Karhunen–Loève basis functions.

I. INTRODUCTION

H EART rate turbulence (HRT) refers to a short-term fluc-
tuation in heart rate triggered by a single ventricular ec-

topic beat (VEB) [1], [2]. Such turbulence is considered to be
a blood-pressure-regulating mechanism, which, in normal sub-
jects, compensates for the VEB-induced drop in blood pressure
by an accelerated sinus rate. The heart rate then decelerates to its
baseline level and the blood pressure returns to its preextrasys-
tolic level [3]–[7]. In normal subjects, the presence of HRT can
be detected and characterized provided that ensemble averaging
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of the RR interval series is first performed to improve the low
SNR. The HRT magnitude depends on heart rate such that higher
heart rates are coupled to lower magnitudes and vice versa [8].
Blunted or missing turbulence reflects autonomic dysfunction
and is associated with various conditions. In particular, HRT has
been established as a powerful risk predictor of mortality and
sudden cardiac death following acute myocardial infarction [1],
[2]. It has also been assessed and found useful for other pa-
tients including those with congestive heart failure [3], diabetes
mellitus [3], and hypotension in hemodialysis patients [9].

To date, turbulence slope (TS) and turbulence onset (TO)
are the two most commonly employed parameters for assessing
HRT. The parameter TO measures the relative change in the
RR intervals that enclose a VEB, defined by the relative differ-
ence of the averages of the two normal RR intervals before and
after the VEB. The parameter TS quantifies the sinus deceler-
ation that follow the VEB and is defined by the steepest slope
observed over five consecutive RR intervals in the first 15 RR
intervals following the VEB. A nonnegative value of TO or a
low value of TS indicates that HRT is blunted or missing. It has
been demonstrated that TS suffers from certain shortcomings,
notably that TS is overestimated when few VEBs are available
for averaging or when considerable heart rate variability (HRV)
is present [10].

Several other parameters have been suggested in the liter-
ature for the purpose of characterizing HRT, although having
received much less attention in clinical studies. These parame-
ters include combined analysis of TO and TS [4], a TS-related
parameter adjusted with respect to either heart rate or the num-
ber of averaged VEBs [10], turbulence timing, which indicates
the first beat number from where TS is calculated [11], and the
correlation coefficient of the regression line fitted to the five RR
intervals of TS [12].

The parameters of the aforementioned HRT analysis are de-
termined from an averaged RR interval tachogram, obtained by
first aligning RR intervals that enclose the VEBs of a recording
and then performing averaging. As a result, the computed pa-
rameter values provide a global characterization of the record-
ing, usually acquired during 24 h, but precludes information
on possible HRT dynamics. While averaging has proven to
be useful in many clinical studies, it suffers nonetheless from
the limitation of combining HRTs that may occur at different
heart rates, and thus, have different turbulence shapes. Conse-
quently, the assumption inherent to ensemble averaging of a
signal shape being fixed throughout the recording may not al-
ways be valid. It would, of course, be desirable to introduce some
technique for noise reduction that makes it possible to accurately
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characterize each individual HRT, or at least when few VEBs
need to be averaged. A step in this direction was recently taken
in an interesting study done by Rojo-Álvarez et al. [13], where
support vector machine estimation was exploited for the purpose
of denoising individual HRTs. The parameter TS was computed
on different types of datasets before and after denoising, lead-
ing to the conclusion that such denoising made analysis possible
even when few VEBs were available.

Another approach to combatting noise in HRTs was recently
presented where model-based, statistical detection was con-
sidered in relation to the integral pulse frequency modulation
(IPFM) model, but extended to account for HRT [14]. It was as-
sumed that the observed signal can be viewed as the summation
of HRV, modeled by additive white Gaussian noise, and HRT,
modeled as a linear combination of Karhunen–Loève (KL) basis
functions. An advantage with that detector is that the observa-
tions are indexed with time rather than with beat occurrence,
which is inherent to the tachogram, and thereby that approach is
better matched to physiology and will compensate for the fact
that TS leads to structural correlation between HRT and heart
rate [10]. While the resulting test statistic of the generalized
likelihood ratio test (GLRT) is primarily used to decide whether
HRT is present or not, its magnitude reflects HRT strength and
may therefore be used as a descriptive parameter as well. Results
from simulated data suggested that the GLRT detector offers bet-
ter performance than does TS since at least twice the number of
VEBs for averaging are needed for TS to attain a performance,
which is identical to that of the GLRT detector [14].

The assumption of HRV being modeled as white noise is
clearly unrealistic as it contradicts the well-known fact that the
HRV spectrum has a certain structure that reflects autonomic
balance [15]. This assumption was still considered because it
does not require power spectral estimation and leads to a detector
with simple structure [14]. In the present paper, the white noise
assumption is examined in terms of HRV and HRT power spec-
tra and its feasibility for modeling HRV is considered. Following
the work published in [14], it was found that the assumption of
HRT being modeled as an unrestricted linear combination of
basis functions sometimes lead to turbulence shapes that have
nonphysiological characteristics, i.e., the signal model is not re-
stricted to the acceleration–deceleration response that is usually
referred to as a turbulence shape. In order to solve this problem,
a revised model is presented here, where certain a priori infor-
mation on turbulence shape is incorporated; the corresponding
GLRT detector is derived and evaluated. The present study in-
cludes a performance evaluation that goes much beyond the
one in [14]: first, detection performance is now evaluated when
the turbulence shape is allowed to vary, and, second, a large
dataset of ECGs with or without HRT is studied for evaluation
purposes.

This paper is organized as follows. Section II presents the
datasets used for investigating the white noise assumption and
evaluating the HRT detector, including both simulated RR inter-
val data and long-term ECG recordings. The spectral properties
of HRV and HRT are analyzed in Section III in order to shed
light on the noise modeling assumption. Section IV describes the
new detector that incorporates information on mean turbulence

Fig. 1. Block diagram of (a) original IPFM model and (b) extended IPFM
model. The two switches S1 and S2 are positioned such that normal sinus
rhythm is modeled. The dashed lines describe control signals.

shape, and the subsequent section presents its performance and
compares it to that of the GLRT detector in [14] as well as to
that of TS. A discussion of the method and its performance is
found in Section VII.

II. MATERIALS

A. Simulated Signals Using the Extended IPFM Model

The IPFM model can be used to create a series of heart-
beat occurrence times from a continuous-time modulating sig-
nal m(t), which reflects the autonomic influence on the cardiac
rhythm [15]. An extended IPFM model was recently proposed
that accounts for HRT by introducing a feedback branch that
is triggered by an ectopic beat (see Fig. 1) [14]. An additive
approach is used where the input signal x(t) to the model is
given by the sum of the HRT signal s(t) and the HRV signal
m(t). The deterministic signal s(t) is the sum of all turbulence
episodes

s(t) =
Ne∑

l=1

hl(t − tkl +1) (1)

where hl(t) is the turbulence response to the lth VEB and Ne

denotes the number of VEBs. The occurrence time for the first
normal beat after the lth VEB is denoted tkl +1 . The HRV signal
m(t) is usually viewed as physiological, but is, in this context,
viewed as observation noise. Moving to a discrete-time repre-
sentation, the observations xl of the lth VEB can be written
as

xl = hl + ml (2)

where hl and ml are the N × 1 discrete-time vectors of HRT
and HRV, respectively. The HRT response to the lth VEB is
modeled linearly with a truncated set of KL basis functions

hl = Bθl (3)

where B is an N × r matrix whose r columns contain the KL
basis functions, and θl is an r × 1 vector containing the KL
coefficients associated with the lth VEB. The basis functions in
B together with θl define the turbulence shape.

In this study, the output of the extended IPFM model is con-
sidered for evaluation of detector performance, being based on
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the assumption that the HRT response hl is fixed and determin-
istic. The matrix B is determined from the observations of some
representative ECG dataset, and its columns are defined by the
most significant eigenvectors of the average correlation matrix
R̄x of equidistantly resampled observations xl containing tur-
bulence. The vector ml accounting for HRV is generated by
a seventh-order autoregressive (AR) model, representing vari-
ability during resting conditions [14]. The desired SNR between
HRV and HRT is obtained by changing the ratio between the
energy of hl and ml .

B. ECG Signals

The long-term ST database contains 86 ECG Holter record-
ings of 80 subjects, acquired during clinical routine in the U.S.
and Europe [16]. The recordings are 2- or 3-lead of up to 24 h
duration and sampled at 250 Hz with 12-bit resolution. Each
recording was manually annotated, including information on
ectopy. A VEB was discarded from further analysis if any of
the following criteria was fulfilled for the surrounding RR in-
tervals [2].

1) An RR interval is <300 or >2000 ms.
2) The difference in length between two adjacent RR inter-

vals is >200 ms.
3) >20% difference to a reference RR interval defined as the

average of the five sinus intervals preceding the VEB.
4) The coupling interval is >80% of the average RR in ten

sinus beats preceding the VEB.
5) The compensatory pause is <120% of the average RR in

ten sinus beats preceding the VEB.
6) The distance between successive VEBs is <30 s; this cri-

terion ensures that HRTs do not influence each other.
These criteria ensure that the sinus rhythm immediately pre-

ceding and following the VEB is free of artefacts, arrhythmia,
and false classifications, and thus, suitable for HRT analysis.

1) Dataset for Spectral Study: When analyzing the spectral
properties of HRT and HRV (see Section III), following two
additional criteria were introduced.

1) The recording should contain≥40 VEBs to ensure that the
variance of the spectral estimate is significantly reduced
through averaging.

2) TS <15 so that outlier HRTs are excluded from further
analysis.

Application of these two additional criteria together with the
previous six criteria resulted in a total of 3498 VEBs from 22
recordings.

2) Datasets for Detector Evaluation: When evaluating de-
tector performance on ECG data (see Section VI), the following
two datasets were used: one containing recordings with HRT,
denoted S1 , and another without HRT, denoted S0 . A recording
was included in S1 if it contained ≥15 VEBs, which all com-
plied with the previous six criteria and with a TS > 2.5. Due to
the low SNR of a single VEB, TS is considered reliable if at
least 15 VEBs has been averaged prior to estimation. Applica-
tion of these two additional criteria together with the previous
six criteria resulted in a total of 5764 VEBs from 26 recordings.
The set S0 is constructed by extracting 26 577 segments from

Fig. 2. Segment definition for the RR interval tachogram containing a VEB.
Segment IA contains 15 s of normal RR intervals that precede the VEB, whereas
IB contains 15 s of RR intervals that are subsequent to the VEB.

ten patients without any VEBs. The set S1 is randomly divided
into a learning set (S1,l) and a test set (S1,t), whereas the whole
dataset S0 is used for testing.

III. SPECTRAL PROPERTIES OF HRV AND HRT

The purpose of this section is to analyze the spectral properties
of HRV and HRT in order to support the assumptions made later
on concerning the observation model. The analysis also provides
some insight on the SNR for these two activities. Our approach
lies in comparing power spectra estimated from the segments
located just before and after a VEB, respectively. The following
frequency bands are studied: the low-frequency (LF) band 0.04–
0.15 Hz, the high-frequency (HF) band 0.15–0.40 Hz, and the
LF+HF frequency band 0.04–0.40 Hz.

A. Spectral Relationships for HRV and HRT

The segments located just before and after a VEB are denoted
IA and IB , respectively, and both contain the RR intervals
occurring during 15 s of normal sinus rhythm (see Fig. 2). Thus,
IA contains HRV only, whereas IB may contain both HRV and
HRT.

The parameter ∆P can be viewed as a measure of the increase
in power following a VEB. This parameter is defined as the
difference between the average power spectrum P̄A (ejω ) and
P̄B (ejω ), resulting from the IA and IB segments, respectively,
and normalized with the power of P̄A (ejω )

∆P =

∫ ω2

ω1
(P̄B (ejω ) − P̄A (ejω ))dω

∫ ω2

ω1
P̄A (ejω )dω

(4)

where ω1 and ω2 define the different frequency bands mentioned
earlier. The average power spectrum P̄ (ejω ) is obtained by esti-
mating the power spectrum P̂l(ejω ) for each IA or IB segment
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Fig. 3. Average power spectra reflecting (a) HRV, (b) combined influence of HRV and HRT, and (c) HRT, respectively. One standard deviation is displayed for
each power spectrum using dashed lines.

and then averaging, we have

P̄ (ejω ) =
1

Ne

Ne∑

l=1

P̂l(ejω ) (5)

where Ne denotes the number of VEBs in a record. In this study,
a power spectrum P̂l(ejω ) is estimated using the periodogram

P̂l(ejω ) =
1
N

|Xl(ejω )|2 (6)

where Xl(ejω ) is the discrete-time Fourier transform of an
N -point vector xl , based on data from either IA or IB seg-
ments, with its mean value removed and padded with zeros to
always become a 1024-point vector. Averaging of a sufficiently
large number of vectors xl estimated from IB segments will
cancel HRV and produce an estimate of HRT; the segment with
averaged data is denoted IB̄ . An estimate of the SNR in terms
of HRT and HRV is given by the ratio between the power in the
IB̄ segment (HRT) and the power in the IB segment (the sum of
HRV and HRT) after subtracting the power in the IB̄ segment
(HRT),

ηSNR =

∫ ω2

ω1
PB̄ (ejω )dω

∫ ω2

ω1
P̄B (ejω )dω −

∫ ω2

ω1
PB̄ (ejω )dω

(7)

where ω1 and ω2 are the frequencies defining the LF+HF band.

B. Spectral Observations

Fig. 3 shows the average power spectra for segments IA ,
IB , and IB̄ when HRT is present. It is evident that P̄A (ejω ),
P̄B (ejω ), and PB̄ (ejω ) overlap spectrally. It is also evident that
the power spectra computed before and after a VEB are similar
in shape, but not in magnitude.

Fig. 4 shows that the total power of P̄B (ejω ) increases as
the turbulence level increases in relation to P̄A (ejω ) as does the
power in LF band. However, there is much less activity in the HF
band, thus indicating that HRT is mostly confined to the LF band.
This result agrees with the knowledge that HRT is a blood pres-
sure regulating function [1], being characterized by a spectral
peak around 0.1 Hz [15]. As expected, the estimated SNR in-
creases as TS increases (see Fig. 5). Based on the entire set of
VEBs, the mean TS was computed and found to be 5.1 ms per
beat that corresponds to an SNR of ηSNR = −9.0 dB. Such a
low SNR clearly indicates that HRV is still very present during
HRT and accounts for most of the power contained in a single
IB segment.

Fig. 4. Power ratio ∆P as a function of TS [cf., the definition in (4)] for the
LF, HF, and LF+HF bands. Robust line fitting is used to facilitate interpretation
of the data.

These observations show that a substantial spectral overlap
exists between IA and IB segments. Since the HRT spectrum
PB̄ (ejω ) is largely confined inside the HRV spectrum P̄A (ejω ),
a noise whitening operation would also whiten the HRT sig-
nal and render detection improvement difficult. It is, therefore,
concluded that white noise assumption is feasible to adopt in a
model for HRT detection, which is shown shortly.

IV. METHODS

Our previously proposed detector, presented in [14], was
based on the extended IPFM model and an equidistantly sampled
signal xl , obtained after the lth VEB in a recording. Dropping
the index l, the detection problem was formulated as

H0 : x = m

H1 : x = Bθ + m (8)

where hypothesis H0 represents when HRT is absent and hy-
pothesis H1 when present. The N × 1 observation vector x is
obtained from the RR intervals according to the method de-
scribed in [14], m is an N × 1 vector and represents HRV, here
treated as random observation noise. The N × r matrix B con-
tains r different KL basis functions that model HRT, cf. (3), and
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Fig. 5. Estimated SNR ηSNR for HRT and HRV as a function of TS [cf., the
definition in (7)]. Robust line fitting is used to facilitate interpretation of the
data.

the vector θ is a deterministic r × 1 vector with unknown KL
coefficients.

The related GLRT test statistic, denoted Tθ (x), was used to
decide hypothesis H1 if [14]

Tθ (x) =
N − r

r

θ̂
T
θ̂

xT x − θ̂
T
θ̂

> γ′ (9)

where

θ̂ = BT x (10)

is the KL coefficient estimator and γ′ an appropriately chosen
threshold. The energy projected on the signal space (spanned by
the r basis functions) is given by xT BBT x, whereas the energy
projected on the orthogonal (N − r)-dimensional noise space
is given by xT (I − BBT )x. As a result, the test statistic Tθ (x)
can be viewed as an estimate of the SNR that reflects the ratio
between HRT and HRV [14].

The detector Tθ (x) suffers from the disadvantage of relying
solely on energy, accepting all HRT shapes defined by the signal
subspace even if they are not physiological. Our approach to
solve this limitation is to introduce a priori information about
the shape of HRT in terms of the vector µ, which contains
the KL coefficients of the mean turbulence shape. Exchanging
the unknown vector θ for the known µ leads to the following
model

H0 : x = m

H1 : x = Bµ + m (11)

where, as before, H0 represents when HRT is absent and H1
when present. The vector µ is an r × 1 vector containing the
KL coefficients of the mean turbulence shape that is estimated
a priori from a learning set. Based on the observations made in
Section III, HRV is characterized by the Gaussian probability
density function (pdf) N (0, σ2I), where I denotes the iden-

tity matrix and σ2 the variance, which, here, is assumed to be
unknown, and therefore, subjected to estimation.

The related detector is based on the Neyman–Pearson theorem
in which the probability of detection PD is maximized for a given
probability of false alarm PFA = α by deciding H1 if [17]

L(x) =
p(x;H1)
p(x;H0)

> γ (12)

where p(x;Hi) denotes the PDF of x under Hi , and the thresh-
old γ is found from

PFA =
∫

{x:L(x)>γ}
p(x;H0) dx = α. (13)

Using the signal model in (11) and the Neyman–Pearson
theorem, the GLRT becomes

LG (x) =
p(x; σ̂2

H1
,H1)

p(x; σ̂2
H0

,H0)
> γ (14)

where σ̂2
Hi

is the maximum-likelihood (ML) estimate of σ2 ,
assuming that Hi is true.

If we let

Tµ(x) = LG (x)2/N > γ2/N = γ′ (15)

which is a monotonically increasing function of LG (x), and
therefore, an equivalent test statistic, then we can define (see the
Appendix for derivation)

Tµ(x) =
xT x

(x − Bµ)T (x − Bµ)
> γ′ (16)

where the resulting test statistic Tµ(x) of the GLRT in (14) is
used for HRT detection. Hypothesis H1 is decided if Tµ(x) >
γ′, where γ′ is a threshold determined for a given PFA . The
detector statistic Tµ(x) can be viewed as the ratio of the squared
Euclidean distance between x and the origin, and the distance
between x and Bµ. The expectation of x when HRT is absent
or present is 0 or Bµ, respectively [cf., (11)]. Hence, Tµ(x) will
be close to zero when HRT is absent and increase when HRT is
present.

V. DETECTOR EVALUATION

In the detector evaluation, the GLRT detectors use basis func-
tions that resulted from S1,l , (i.e., B = B̂l), whereas the ex-
tended IPFM simulation model use basis functions that resulted
from S1,t , (B = B̂t). Both B̂l and B̂t are obtained as the three
most significant eigenvectors (i.e., r = 3) of two average cor-
relation matrices R̄x estimated from the observations xl of the
two sets S1,t and S1,l . Each observation xl is 10 s, resulting in
a 21 × 1 vector. The mean shape vector µ also differed from
model to detector (described shortly) to avoid the risk of pro-
ducing simulated signals that are matched to the detectors.

Evaluation of detector performance using different SNRs was
performed using the simulator model. The model employed a
mean shape resulting from S1,t (µ = µ̂t), whereas the detector
employed a mean shape resulting from S1,l , (µ = µ̂l). A total
of 4000 signals were simulated for each of the evaluated SNRs,
divided in 2000 signals with HRT and 2000 without.
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Fig. 6. Mean turbulence shape µ (thick line) and 20 averaged observations
x̄ (Ne = 10), obtained from S1 , l . Note that x(t) in this diagram is inversely
proportional to the commonly displayed RR interval tachogram.

In order to evaluate how variations in mean shape affects
detection performance, simulations were performed where the
model uses a set of varying mean shapes to generate signals. A
set of M vectors µ̃i were produced

µ̃i = µ̂t + ∆µi , i = 1, . . . ,M (17)

where the vectors ∆µi accounts for the variability (M = 100).
Generation of ∆µi is accomplished by producing a random
vector ui ∼ N (0, σ2

µI) of size 1 × r, which is multiplied with
the Cholesky decomposition of the covariance matrix estimated
from the KL coefficients calculated from dataset S1 , thus pro-
ducing a set of generated KL coefficients. Due to a low SNR
between HRV and HRT, σµ is used as a scaling factor in order
to ensure that the generated vectors µ̃i resembles HRT. Set-
ting σµ = 0.25 resulted in a variety of turbulence shapes with
physiological appearance.

Further, detection performance was evaluated on ECG sig-
nals using the datasets S0 and S1,t . It should be noted that
VEB averaging is not required in GLRT detection, but the test
statistic Tµ(x) can just as well be evaluated for single VEBs.
If averaging is considered, the observation vector x is replaced
with x̄ in the test statistic, being the ensemble average of xl ,
l = 1, 2, . . . , Ne . Fig. 6 shows the mean turbulence shape result-
ing from the learning set S1,l as well as examples of averaged
observations x̄.

VI. RESULTS

Fig. 7(a) presents the receiver operating characteristics
(ROCs) for Tµ(x), Tθ (x), and TS at a very low SNR (−10 dB) of
the simulated signals, showing that Tµ(x) performs better than
both Tθ (x) and TS. At this SNR, the performance of the latter
two detectors is random as the ROCs essentially coincide with
the diagonal, i.e., the performance is identical to the outcome
of tossing a coin with heads and tails. Increasing the SNR to

Fig. 7. ROCs for Tµ (x) (solid line), Tθ (x) (dashed line), and TS (dotted line)
when analyzing simulated signals. The performance is evaluated at an SNR of
(a) −10 dB and (b) 0 dB.

0 dB, the difference in performance becomes more pronounced
between the three detectors with Tµ(x) outperforming the other
two [see Fig. 7(b)]. It should be noted that Tθ (x) performs better
than does TS at this SNR. Fig. 7(b) shows that Tµ(x), Tθ (x), and
TS attain detection probabilities (PD ) of 0.94, 0.65, and 0.50, re-
spectively, at a false alarm probability (PFA ) of 0.1. For an SNR
of 10 dB (not shown), the performances of all three detectors are
essentially perfect, and therefore, it can be concluded that SNRs
ranging from about −10 to 10 dB are of interest to study in sim-
ulations. The lower bound of this range roughly corresponds to
the SNR of a single VEB as found in Section III-B.

Fig. 8 shows the detection performance for simulated signals
when using 100 different mean shapes in the model at an SNR of
0 dB. Results are presented for the 10th, 50th, and 90th percentile
of each detector. At a false alarm probability of PFA = 0.1 the
probability of detection for Tµ(x) ranges from 0.64 to 0.96 with
a median of 0.89 [see Fig. 8(a)], whereas Tθ (x) ranges from
0.39 to 0.73 with a median of 0.61 [see Fig. 8(b)] and TS from
0.30 to 0.63 with a median of 0.46 [see Fig. 8(c)]. Tµ(x) clearly
offers better performance than do Tθ (x) and TS when variations
in the mean shape are present.

Turning to the ECG signals, detector performance is evalu-
ated on the test set (S0 ,S1,t ), using parameters determined from
the learning set (S1,l) (see Section V); details on the design of
datasets are found in Section II-B. Applying the three detectors
to single VEBs, i.e., without resorting to averaging, the ROCs
in Fig. 9(a) show that Tµ(x) performs better than both Tθ (x)
and TS. Increasing the SNR by averaging ten VEBs, it is obvi-
ous from Fig. 9(b) that Tµ(x) offers superior performance when
compared to the other two detectors that are quite similar in
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Fig. 8. ROCs obtained when evaluating performance on simulated signals
generated using 100 different mean shapes. Solid line describes ROC for the
50th percentile, dashed lines for the 10th and 90th percentile for (a) Tµ (x),
(b) Tθ (x), and (c) TS using an SNR of 0 dB.

performance. The detection probabilities of Tµ(x), Tθ (x), and
TS are found to be 0.83, 0.35, and 0.41, respectively, at
PFA = 0.1. A further increase of the SNR, obtained by aver-
aging 50 VEBs, results in an almost perfect ROC for Tµ(x)
since PD = 1 for almost all values of PFA [see Fig. 9(c)]. The
performance of Tθ (x) and TS is still inferior with PD = 0.86
and PD = 0.73, respectively, at PFA = 0.1. Results have been
summarized in Table I.

It is interesting to note that the ROCs resulting from simula-
tions and ECG signals, displayed in Figs. 7 and 9, respectively,
have a striking resemblance. Simulated signals with an SNR of
−10 dB and ECG signals without VEB averaging have similar
ROCs, as do simulated signals with an SNR of 0 dB and ECG
signals with ten VEBs averaged.

VII. DISCUSSION

In our previous work, HRV was treated as additive obser-
vation noise and modeled as white [14]. This assumption is

Fig. 9. ROCs for Tµ (x) (solid line), Tθ (x) (dashed line), and TS (dotted
line) when analyzing ECG signals. The performance is evaluated for (a) single
VEBs, (b) averaging of ten VEBs, and (c) averaging of 50 VEBs.

TABLE I
PROBABILITY OF DETECTION (PD ) AT A FIXED FALSE

ALARM PROBABILITY (PFA ) OF 0.1
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certainly unrealistic since the spontaneous variability in heart
rate is correlated. However, we have shown in this paper that the
spectral content of HRT is contained within the HRV spectrum
(see Fig. 3), and thus, the white noise assumption seems feasible
to use since a whitening procedure would whiten the HRV and
HRT components similarly as well as requiring more parame-
ters to be estimated. The results also show that HRV remains in
play during HRT.

Introducing the mean turbulence shape µ, a large improve-
ment in performance was found on both simulated and real sig-
nals when compared to the original GLRT detector Tθ (x) and
the commonly used parameter TS. This improvement can be
explained by the new detector being able to distinguish between
physiological and nonphysiological turbulence, thereby leading
to better detection accuracy. Evaluation of simulated data, gen-
erated using different mean shapes, showed that the new detector
is robust and can handle variations in the turbulence shape while
maintaining high accuracy. Another advantage compared to TS
is that the detector uses equidistantly sampled observations as
input, and therefore, does not suffer from structural correlation
to heart rate that is inherent to beat-related measures [10].

In Section III-B, we made the observation that the mean TS
is 5.1 ms per beat for a single VEB, corresponding to ηSNR =
−9.0 dB. As a result, an SNR of about 0 dB is achieved by
averaging ten VEBs (an SNR gain of 3 dB is obtained when
twice as many VEBs are averaged). The results for simulated
signals using an SNR of −10 dB and evaluating the detector
on single VEBs yield similar performance. This was also found
for an SNR of 0 dB and ten averaged VEBs. Good detection
performance is found when averaging ten VEBs, which for
Tµ(x) gives a high probability of detection, while retaining
a low probability of false alarm (see Fig. 9). In terms of SNR,
Tµ(x) achieves excellent performance at an SNR of 0 dB.

The current GLRT statistic Tµ(x) estimates the variance σ2

under both H0 and H1 . A test statistic using a fixed variance
was also investigated during the progress of this paper for which
the variance was estimated a priori from the training set. While
the resulting performance was almost at par with that obtained
for running variance estimation, fixed variance would imply the
use of a detector structure that needs more a priori information.
This would lead to reduced generality when using the detector
on other databases.

When constructing the dataset S1 , we relied on TS as a mea-
sure of HRT presence (see Section II), which to date is the
clinically accepted method. A recording with a sufficient num-
ber of VEBs, where the averaged beat tachogram had TS > 2.5,
was included in the dataset, the assumption being that the av-
erage beat tachogram represents the HRT response after each
VEB. There is likely a certain number of VEBs present in the
HRT dataset that does not contain HRT, especially in the lower
TS range (just above TS = 2.5). This will affect the probability
of detection negatively and the effect will be most visible when
evaluating single or few averaged VEBs. The impact of this
has not been studied since it will affect the evaluated detectors
similarly.

Although Tµ(x) was found to perform very well for detection
of HRT, further evaluation is needed to investigate if Tµ(x) can
further improve the clinical significance of HRT. In particular,

it is of crucial interest to study the present detector in terms
of cardiac risk assessment, to date being the most successful
application of HRT.

VIII. CONCLUSION

In this paper, the mean turbulence shape µ was introduced
in the signal model and the related GLRT detector was derived.
The results show that Tµ(x) outperforms the previously pro-
posed Tθ (x) and the commonly used parameter TS. This paper
also showed that HRV, in this model considered to be observa-
tion noise, may be modeled using the white noise assumption.
A heuristic connection between the SNR and the number of av-
eraged VEBs was established where an SNR of 0 dB is roughly
obtained by averaging ten VEBs.

APPENDIX

DERIVATION OF THE TEST STATISTIC Tµ(x) FROM

THE GLRT IN (14)

The GLRT in (14) decides H1 if

LG (x) =
p(x; σ̂2

H1
,H1)

p(x; σ̂2
H0

,H0)
> γ (18)

where

p(x;σ2 ,H1) =
1

(2πσ2)N/2 exp
[
− 1

2σ2 (x − Bµ)T (x − Bµ)
]

(19)

and

p(x;σ2 ,H0) =
1

(2πσ2)N/2 exp

[
− 1

2σ2 xT x
]

. (20)

The MLE of σ2 under H1 and H0 is found by maximizing
p(x;σ2 ,H1) and p(x;σ2 ,H0), respectively, over σ2

σ̂2
H1

=
1
N

(x − Bµ)T (x − Bµ) (21)

σ̂2
H0

=
1
N

xT x. (22)

Hence

p(x; σ̂2
H1

,H1) =
1

(
2πσ̂2

H1

)N/2 exp

[
−N

2

]
(23)

and

p(x; σ̂2
H0

,H0) =
1

(
2πσ̂2

H0

)N/2 exp

[
−N

2

]
. (24)

Thus, the GLRT is

LG (x) =

(
σ̂2
H0

σ̂2
H1

)N/2

> γ. (25)

If we let

Tµ(x) = LG (x)2/N > γ2/N = γ′ (26)

which is a monotonically increasing function of LG (x),
and therefore, an equivalent test statistic, then we can
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define

Tµ(x) =
σ̂2
H0

σ̂2
H1

=
xT x

(x − Bµ)T (x − Bµ)
> γ′. (27)
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