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Abstract

In this work we revisit an ischemia detector based on
the root mean square (RMS) series of the repolarization
interval developed and validated using the European So-
ciety of cardiology ST-T database (ESCDB). This detec-
tor, developed within this database framework, gets sen-
sitivity (S)/positive predictivity (+P) performance figures
of 85%/86%. Our aim now is to re-evaluate the detec-
tor in the much richer Long-Term ST Database where ST
episodes of different origin are present, making a much
more challenging scenario for the detector. Just a straight
forward adaptation of the RMS detector reduces its perfor-
mance figures, S/+P, to70%/68%. This, apart from other
reasons, is a consequence of the presence in the database
of ST episodes generated by body position changes (BPC)
which can be misinterpreted. A BPC detector incorporated
to the previous detector noticeably improves the figures up
to 75%/71%.

1. Introduction

Today 24-hour ECG monitoring is widely used to eval-
uate patients with suspected or known coronary artery dis-
ease. The long duration and huge amount of data for these
recordings require some kind of automatization by signal
processing techniques in order to effectively detect poten-
tial ischemic events on the ECG-signal.

The newly released Long Term ST Database (LTSTDB)
[1] contains 24 hour duration records with a large num-
ber of human annotated ischemic and non-ischemic ST-
segment events such as heart rate related events, body po-
sition changes or conduction changes giving a much more
extensive tool to evaluate and develop ischemia detec-
tors than the early European Society of cardiology ST-T
database (ESCDB) [2].

By analysing changes in the ST-segment (see Figure 1),
silent ischaemia can often be diagnosed with the help of
Holter recordings. However ST segment changes can also

result from other causes such as heart rate related events,
changes in the electrical axis of the heart due to body posi-
tion changes (BPC) and conduction changes among others.
Reliable ST detectors should distinguish between ischemic
and non-ischemic ST changes, although this task remains
being a challenge [3].
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Figure 1. Example of two beats where the QRS fiductial
points, the segmented ST length and the RR interval are
represented.

Here we will group together heart rate related and is-
chemic events as the target “event”. Therefore we will
try to cancel false detections due to BPC and conduction
changes. These two kinds of events are responsible for
sudden shifts of the ST segment which result in a step
function feature in different ECG representations such as
Karhunen-Lòeve Transform (KLT) of the QRS complex
and the ST segment [4].

In this work we revisit an ischemia detector developed
by our group [5] and based on the root mean square (RMS)
series of the repolarization interval. It was developed and
validated using the ESCDB and here we incorporate new
modules in order to improve its performance under the
new LTSTDB perspective. We integrate a RMS based
ST changes detector with a BPC detector to cancel out



Figure 2. Block diagram of the ST changes detector presented in this work.

false alarms and improve the positive predictivity of the
ischemia detector.

2. Methods

2.1. Long Term ST Database

The Long-Term ST Database consists of 86, two or three
leads, 21 to 24 hour, Holter ECG recordings. Complete
annotations have been provided for the database following
different annotation protocols. One ST episode, ischaemic
or non-ischaemic heart-rate related, had to be significant to
be annotated according to the following rules: a) episode
beginning when the magnitude of the ST deviation first
exceeds50 µV , b) ending when the deviation becomes
smaller than50 µV , provided that it does not exceed50
µV in the following30 s and c) the deviation must reach a
magnitude ofVmin or more throughout a continuous inter-
val of at leastTmin s.

Three different protocols A, B and C are given depend-
ing onVmin andTmin.

• Protocol A:Vmin = 75µV andTmin = 30s.
• Protocol B:Vmin = 100µV andTmin = 30s.
• Protocol C:Vmin = 100µV andTmin = 60s.

2.2. ST segment changes detector

The RMS-based detector (see Figure 2) operates finding
ST segment changes in the series resulting from computing
the root mean square (RMS) difference series between the
ST segment of a reference beat and the running beat. Then
a threshold-based adaptive detector is applied on the series.

First, preprocessing techniques are applied on the raw
ECG signal,xl(n), wherel is the corresponding lead and
n is the sample index. This preprocessing step consists
of first applying a QRS detector [6] in order to find QRS
fiductial points of eachith beat(θi) and selecting only nor-
mal beats, then baseline wander attenuation using cubic
splines and finally rejection of noisy beats (those with dif-
ferences in mean isoelectric level with respect to adjacent
beats larger than 400µV ). In order to avoid the influence
of high frequency noise in the RMS difference series, the
ECG was low-pass filtered using a linear phase FIR filter
with a cutoff frequency of25 Hz.

The ST segmentation (see Figure 1) is done selecting a

fixed length window of 50 ms,xi
ST,l(n), defined as:

xi
ST,l(n) = xl(ni

ST0
+ n) n = 0, ..., N − 1 (1)

with ni
ST0

= θi +
40

1000
fs + 1.3

√
rri

1000
fs (2)

whereN = 50
1000fs, fs is the sampling frequency (250 Hz

in the whole database) andrri represents the RR interval
at theith beat inms.

In order to calculate the RMS difference series, a ref-
erence beat,xST,l(n), has to be defined. We create a ST
series defined as the first sample of the ST segment of each
beat,xi

ST,l(1) with i = 1, ..., I whereI is the number
of beats. On this series, an interval of 30 minutes called
“basal interval” is searched with two restrictions: having
the shorter peak to peak amplitude and being the whole
interval series below4/3 of the median of the recording.
Within this “basal interval” 100 beats are averaged to cal-
culate the reference beat in each leadxST,l.

Finally the RMS difference series,y(θi) is calculated
using the following equation:

y(θi) =
L∑

l=1

√√√√ 1
N

N−1∑
n=0

(
xi

ST,l(n)− xST,l(n)
)2

(3)

whereL is the number of leads. There are different factors
such as motion artifacts that distort the RMS-series and
therefore it needs post-processing. This is done by reject-
ing beats whose signal-to-noise ratio (SNR) differs more
than 20 dB from the running exponentially averaged SNR
series with constant factor equal to0.02. Latter, as outlier
rejection, a median filter of length 5 beats is used on the
RMS series. This series is evenly resampled to 1 Hz and an
exponential averaged (with constant factor equal to 0.05)
is applied to smooth the series resulting in a RMS- series
suitable for analysis and denoted hereinafter byz(n).

The final stage of the detection algorithm incorporates
an adaptive threshold that works on the amplitude of the
z(n) series. This adaptation is included to account for the
slow changing non-ischemic ST segment drift. The thresh-
old adapts itself by adding a fixed amount “η” to the base-
line ξ(n) of thez(n) series, that is estimated as:

ξ(n) = ξ(n− 1) + β (z(n)− ξ(n− 1)) (4)

whereβ is a parameter that adjusts the speed in the adap-
tation of the baseline to thez(n) series.
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Figure 3. Example of ST changes detection on the record“s20591” showing, in the highest bar, the annotated ischemic
events (protocol B) and in the lowest one the detections. The baseline estimation,ξ(n), (dashed line) and the threshold
(dotted-dashed line) are plotted over thez(n) series.

Whenz(n) > ξ(n) + η for a period of more than 45 s,
an event is detected. See Figure 3.

2.3. BPC detector

Body position changes are often manifested as shifts in
the electrical axis and may be misclassified as ischemic
changes during ambulatory monitoring. Previous studies
use the Karhunen-Lòeve transform (KLT) to detect non is-
chemic episodes such as body position changes or conduc-
tion changes [7]. During these non ischemic events the
QRS signatures change rapidly (generally over a period of
half a minute) generating step function features in its KLT
coefficient series.

In this work we modified a BPC detection technique [7]
to account for conduction and axis shifts and then two se-
ries are used which are different combinations of pairs of
series including the KLT or RMS from the QRS complex
or ST segment. The detector first looks for step changes
in both series, filtering them with a unit step function (216
s the two flat intervals with a linear transition in between
of 72 s) and applying a fixed threshold. Then a“flatness
test” which consists of forcing a flat interval before and af-
ter each corroborated BPC detection is performed. Finally
a logic combination of detected events in both series will
be done resulting the final BPC detections.

The pair of series with better results was the RMS series
of the QRS complex and the ST segment and therefore they
were used in the final BPC detector.

3. Results

The performance of the detector is computed by two
types of statistics: the gross (g) and the average (a) statis-
tics [8]. In the gross statistics each episode has the same
weight while in the average statistics the same weight is
given to each record. Since the detector looks for changes
in the ST-segment, ischemic and heart rate related events

are combined in the sense of logicalOR fuction in the per-
formance analysis. The annotation protocol B from the LT-
STDB is used by default since it follows the same criteria
as the ESCDB annotations in which the performance fig-
ures reached in terms of sensitivity / positive predictivity
(S/+P) were85%/86%.

First, point out that just a straight forward adaptation of
the original RMS-based detector [5] tuned in the ESCDB
with the parameter values,η = 18.1 and β = 0.0083,
reduces its performance figures in the LTSTDB in terms of
S/+P to 70.5%/68.2%. See Table 1, “Original RMS”

After including in the preprocessing step the “basal in-
terval” search to define the reference beatxST (n), and us-
ing η = 21.5 andβ = 0.0103, the performance improves
in a significant way (S/P:76.3%/69.5%) as it is shown in
Table 1, “No BPC det.”.

An evaluation of the need of including BPC cancella-
tion techniques gave a positive answer since an ideal BPC
detector would improve the positive predictivity about5%.
See Table 1, “Ideal BPC det.”

Table 1. Performance of the original (η = 18.1, β =
0.0083) and modified (η = 21.5, β = 0.0103) RMS-
based detectors on the LTSTDB. In the new RMS detector
first the basal interval was included with no BPC detec-
tion, then it was used an ideal BPC detector, then our real
BPC detector and finally we were restricted to detect only
ischemic events and not HR events.

S(g) P(g) S(a) P(a)
ORIGINAL RMS
Original RMS 70.5% 68.2% 70.1% 62.0%
M ODIFIED RMS WITH BASAL I NTERVAL SEARCH

No BPC det. 76.3% 69.5% 79.1% 64.4%
Ideal BPC det. 76.3% 74.7% 79.1% 70.1%
Real BPC det. 75.3% 71.0% 78.1% 66.4%
No HR events 79.6% 62.2% 82.0% 52.4%



Using the developed BPC detector with the pair of series
RMS from the QRS complex and RMS from the ST seg-
ment, the performance did not improve remarkably since
the false BPC detections also reduce theS of the ST
changes detector. See Table 1, “Real BPC det.”

If we are restricted to detect ischemia episodes and we
just consider the heart rate (HR) related ones as false posi-
tives, the detector performance increases inS ( see Table 1
“No HR events”) but decreases in+P . Then showing the
detector as suitable for ischemic events but claiming for
appropriate cancelation rules to increase+P .

The performance analysis of the complete detector in-
cluding the BPC cancellation detector, following the three
different protocols, is shown in Table 2 with fixed parame-
ters valuesη = 21.5 andβ = 0.0103.

Table 2. Performance of the RMS-based detector on the
LTSTDB with the real BPC detector in the three protocols.

S(g) P(g) S(a) P(a)
Protocol A 56.3% 82.8% 61.7% 80.5%
Protocol B 75.3% 71.0% 78.1% 66.4%
Protocol C 84.1% 60.5% 83.7% 54.4%

4. Discussion and conclusions

The RMS-based detector showed a significant drop in
performance on the LTSTDB compared to the results on
the ESCDB. The main reason is due to the fact that the
LTSTDB is much diverse then contains more data since it
was developed to contain a wide variety of real-world data
and therefore a greater number of non-ischaemic events
compared to the ESCDB.

In the LTSTDB several combinations of different leads
were used as they are appearing in the clinical praxis. This
fact affects the detector performance negatively since is-
chemia is reflected differently in different leads.

The basal interval search gives remarkably improve-
ments in the performance analysis (Table 1, “No BPC
det.”) while the BPC detector slightly improves the results
(Table 1, “Real BPC det.”). Nevertheless, the improve-
ment reached the20% of the maximum improvement (Ta-
ble 1, “Ideal BPC det.”) which evidence the difficulties in
developing a robust BPC detector in ambulatory record-
ings.

If we try to just detect ischemic events avoiding heart
rate related changes the sensitivity increases up to 82%
(see Table 1, “No HR events”). This result suggests the
need for the development of cancellation rules for this
heart related changes, if those are not of interest.

If we observe the Table 2, the protocol C is the most
restrictive, having then less annotated ischemic and heart

rate related events what makes the detector improve the
sensitivity. On the other hand, the protocol A is the less
restrictive having many annotated episodes and making the
sensitivity drop but improving in specificity.

In summary we certify that RMS based ischemia de-
tector, tuned in the LTSTDB, decreases the performance
obtained in the ESCDB and claims for much more robust
false alarm cancellation rules, accounting for the very dif-
ferent nature of ST episodes.
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