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Abstract. This article addresses the issue of estimation of statistical at-
lases that describe the average and the variability of a population of anatom-
ical images. Our work is based on Computational Anatomy where anatom-
ical variability is characterized by the deformations existing between a
reference image and each element of the population. This characteriza-
tion allows to translate the study of the statistical variability from the
set of anatomical images to the infinite dimensional Lie group of diffeo-
morphisms where the necessary mathematical setting for statistical anal-
ysis has been recently developed. Our contribution goes in two directions.
First, we propose a novel algorithm for diffeomorphic registration where
the optimization is performed on one-parameter subgroups of the group of
diffeomorphisms. We show that this algorithm outperforms other previous
approaches in terms of image matching, deformation smoothness and com-
putational complexity. Second, we describe a framework for the estimation
of the average and the principal geodesics in the infinite dimensional Lie
group of diffeomorphisms applied to the generation of statistical atlases of
brain images.
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1 Introduction

The estimation of brain atlases from anatomical images is of great relevance due to
its multiple applications, as template-based segmentation, modeling of anatomical
variability, and brain mapping, among others [1–3]. Atlases have been crucial to
understand the variability of brain anatomy in longitudinal and transversal studies
allowing hypothesis testing and improving the diagnosis of mental diseases such
as schizophrenia or Alzheimer’s disease [4, 5].

Most of the atlases are based on a single subject ([3] and references therein).
Their application is limited to images close to the template and cannot be gener-
alized to anatomies presenting large variability without introducing an important
bias. To address with this bias, several authors propose to estimate a statistically
representative average template for the population of images. The majority of the
methods for average atlas estimation are based on Computational Anatomy, that
proposes to parametrize anatomical variability by the deformations existing be-
tween the elements of the population of images. This parametrization allows to
translate the study of the statistical variability from the sample of images to the
associated deformations. Thus, the average atlas is computed from the estimated
average transformation.

Some works compute the average transformation performing linear average of
the displacement fields associated to the sample transformations [6, 7]. Although
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these techniques provide acceptable results with transformations in the small defor-
mation setting, the space of displacement fields is not a linear space and, therefore,
linear averaging could give rise to non plausible results in anatomical images with
high variability. As an alternative, the computation of the average transforma-
tion is usually approached with the theory of large deformations that results more
appropriate when dealing with anatomical images [8–11].

Transformations in the large deformation setting are assumed to be in the in-
finite dimensional Lie group of diffeomorphisms. The mathematical framework for
the computation of average and principal geodesics has been deeply studied for
finite dimensional Lie groups [12, 13]. This framework can be extended to the in-
finite dimensional Lie group of diffeomorphisms once some of the elements of this
Riemannian manifold are identified. Among others, these elements are the tangent
space, the geodesics and the exponential and logarithm maps. All of them have
been described in the theory of classical mechanics [14]. In the last years, Com-
putational Anatomy has focused on the computation of the exponential and the
logarithm maps towards the estimation of the average and principal geodesics in
the group of diffeomorphisms [8, 9, 15, 10, 16]. To our knowledge, no proposal there
exists for Principal Geodesic Analysis (PGA) in the group of diffeomorphisms.

Our work intends to embed the mathematical setting for statistical analysis
on the infinite dimensional Lie group of diffeomorphisms into the large deforma-
tion theory to provide a framework for the estimation of statistical atlases from
populations of anatomical images. Our contribution goes in two directions. First,
we propose a novel method for diffeomorphic registration that outperforms other
previous approaches in terms of image matching, deformation smoothness and
computational complexity. Second, we extend the framework for the computation
of the average and the modes of variation in [12, 13] to the infinite dimensional Lie
group of diffeomorphisms with application to the estimation of statistical atlases
in brain imaging.

The rest of the article is divided as follows. In Section 2 we present our method
for the computation of diffeomorphisms. Section 3 focuses on the framework for
the estimation of statistical atlases. The results are presented in Section 4. Finally,
Section 5 presents discussion and some concluding remarks.

2 Diffeomorphic registration between anatomical images

Let Ω be a subset of points in Rn. A diffeomorphism is a smooth continuous
mapping ϕ : Ω → Ω with smooth and continuous inverse. The set of diffeomor-
phisms Diff(Ω) constitute an infinite dimensional Riemannian manifold where
the tangent space at the identity V , is the space of vector fields in Ω.

In Computational Anatomy, images are considered as diffeomorphic deforma-
tions of a reference image plus additive noise, I = Iref ◦ ϕ + n. The noise term
accounts for anatomical details that cannot be explained by ϕ as well as for pho-
tometric variations. A diffeomorphism connecting two images I0, I1 : Ω → R is
represented by the end point ϕ = φ(1) of a path or flow of diffeomorphisms in
the Riemannian manifold, φ(t) : [0, 1] → Diff(Ω). This path is usually computed
from its corresponding flow of vector fields in the tangent space v(t) : [0, 1] → V by
the transport equation φ̇(t) = v(t, φ(t)) [14]. Thus, the optimal diffeomorphic path
connecting I0 to I1 is computed from the minimization of the energy functional

EI0→I1(v(t)) =
∫ 1

0

‖v(t)‖2V dt +
1
σ2
‖I0 ◦ ϕ−1 − I1‖2L2 (1)
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where v and φ satisfy the transport equation, ‖ ·‖V measures the amount of defor-
mation of the associated diffeomorphism, ‖ · ‖L2 measures the similarity between
the images, and σ is a scaling factor that balances the similarity of the images and
the smoothness of the diffeomorphism. As a result, the solution the optimization
of Equation 1 provides a geodesic path in Diff(Ω).

In contrast to Computational Anatomy, our framework considers Diff(Ω)
not only as a Riemannian manifold but also as an infinite dimensional Lie group
together with the composition of diffeomorphisms. As in the case of finite dimen-
sional Lie groups, geodesics in Diff(Ω) are identified with one-parameter sub-
groups. Each v ∈ V spans a unique one-parameter subgroup of diffeomorphisms
Diffv(Ω) = (φ(s))s∈R. The elements in Diffv(Ω) are solution of the stationary
transport equation φ̇(t) = s · v(φ(t)) with initial condition φ(0) = e and constitute
geodesics in Diff(Ω) with infinitesimal generator v = ∂

∂tφ(t) |t=0. These elements
are of the form exp(sv), s ∈ R, where exp : V → Diff(Ω) is the exponential map.

Thus, our method for the computation of diffeomorphisms between anatomical
images assumes that ϕ belongs to a one-parameter subgroup Diffw(Ω) for some
infinitesimal generator w ∈ V . Thus, the diffeomorphism that connects I0 and I1 is
represented by exp(w), where w is computed from the minimization of the energy
functional EI0→I1(w) = ‖w‖2V + 1

σ2 ‖I0 ◦ exp(w)−1 − I1‖2L2 . In order to assure a
source to target symmetry in the registration we use the inverse-consistent version
instead

EI0↔I1(w) = ‖w‖2V +
1
σ2

(‖I0 ◦ exp(w)−1 − I1‖2L2 + ‖I1 ◦ exp(w)− I0‖2L2

)
(2)

The Euler-Lagrange equation associated to the minimization of the energy func-
tional is ∇wEI0↔I1(w) = 2w−(LL†)−1

(
2

σ2 (I0 ◦ exp(w)−1 − I1)∇(I0 ◦ exp(w)−1)
)

+(LL†)−1
(

2
σ2 (I1 ◦ exp(w)− I0)∇(I1 ◦ exp(w))

)
, where L is a linear differential

operator associated to the ‖ · ‖V .
The numerical implementation for finding the minimum of the energy func-

tional proceeds in a gradient descent fashion using a golden search strategy to
update the step size ε. The algorithm initializes with iteration k = 0, w = 0V , and
ϕ = e. Every iteration in the gradient descent consists of the following steps: 1)
Compute ∇wk

E(wk) from the Euler-Lagrange Equation. 2) Update the gradient
descent step wk = wk−1 − ε∇wk−1E(wk−1). 3) Compute the inverse diffeomor-
phimsm ϕ−1 = exp(−wk). 4) Compute the direct diffeomorphism ϕ = exp(wk).
5) Compute the transformed images I0 ◦ϕ−1 and I1 ◦ϕ. 6) Check for convergence
criterion. The computation of the exponential map is performed using the exten-
sion of the Scaling and Squaring method to diffeomorphisms [16]. The rest of the
implementation details are similar to those found in [15].

3 Estimation of statistical atlases

In Computational Anatomy, the notion of similarity between images connected
by diffeomorphic registration is defined from the metric in Diff(Ω). Two im-
ages are similar if the diffeomorphism with minimal norm existing between them
provides a small amount of deformation [17, 10]. Given I1, ..., IN a set of sample
images the average atlas can be defined as the anatomical image that minimizes
the amount of diffeomorphic deformation necessary to match with all the sample
images simultaneously. This definition allows to translate the study of the anatom-
ical variability from the sample of images to their associated diffeomorphisms. The
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benefit is that statistical analysis can be performed extending the techniques pre-
viously developed for finite dimensional Lie groups to the infinite dimensional Lie
group of diffeomorphisms. In order to compute the average and perform statistical
analysis, we must assume that all the diffeomorphisms involved in the computa-
tions belong to one-parameter subgroups to guarantee the existence of the inverse
of the exponential map (logarithm map). Thus, given Iref initial estimate of the
average atlas, and ϕi ∈ Diffwi(Ω) such that Ii = Iref ◦ ϕi + ni, i = 1, ..., N ,
the computation of the average atlas Ī can be translated to the computation of
the average diffeomorphism ϕ̄ associated to the ϕi in the Lie group Diff(Ω) by
means of Ī = Iref ◦ ϕ̄. An scheme of this framework is shown in Figure 1.
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Fig. 1. Left, framework for the computation of the average atlas. Right, dataset of images
used for atlas estimation in the experimental section.

The average diffeomorphism is defined as the intrinsic or Karcher average [13,
12] in the manifold Diff(Ω), ϕ̄ = arg minϕ

∑N
i=1 ‖ log(ϕi ◦ϕ−1)‖2V . The computa-

tion of the average diffeomorphism proceeds in a gradient descent on the manifold
of diffeomorphisms

ϕ̄(k+1) = exp

(
1
N

N∑

i=1

log
(
ϕi ◦ ϕ̄−1

(k)

))
◦ ϕ̄(k) (3)

The algorithm is initialized with iteration k = 0, ϕ̄(0) = e and ϕi solution of the
diffeomorphic registration EIi↔Iref

(wi). The exponential and logarithm maps are
computed using the method proposed in [16]. The convergence in the gradient
descent is reached when ‖∑N

i=1 log(ϕi ◦ ϕ−1
(k))‖2V is under a tolerance value.

In order to reduce the bias introduced by the selection of Iref , we propose
to include the gradient descent for the computation of ϕ̄ in an iterative algo-
rithm that re-estimates Iref and ϕi subsequently. The algorithm is initialized
with Iref equal to the element from the population of images that minimizes∑

i 6=j ‖wi‖2V + (1/σ2)‖Ii ◦ ϕ−1
i − Ij‖2L2 . Then, ϕ̄ is computed from the gradient

descent on Diff(Ω) (Equation 3). At this point, the images Ii ◦ϕ−1
i ◦ ϕ̄, that can

be expressed as Iref ◦ ϕ̄ + ni ◦ ϕ−1
i ◦ ϕ̄, constitute a cloud of points in a neighbor-

hood of Iref ◦ ϕ̄. In this neighborhood we can approximate the new Iref by the
linear average 1

N

∑N
i=1(Ii ◦ ϕ−1

i ◦ ϕ̄), thus reducing the noise variance. The diffeo-
morphic registration EIi↔Iref

(wi) allows to compute ϕi in the following iteration.
The convergence is reached when ‖I(k)

ref − I
(k−1)
ref ‖2L2 is less than a tolerance value.

The final estimated average atlas is Iref .
At this point, any multivariate statistical technique can be used to analyze

the variability from the average. For example, the computation of the modes of
variation can be done with Principal Geodesic Analysis (PGA) on the residuals
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wi, solution to the variational problem EIi↔Ī(wi). In terms of the canonical ba-
sis in V , the residuals can be written as ui = vec(wi), where vec represents a
matrix vectorization. Singular value decomposition (SVD) of the residual matrix
R = (u1|...|uN ) provides the direction of the principal geodesics and the energy
associated to each mode of variation (u(k), s

2
(k)). Analogously to PGA in the finite

dimensional case, we can choose a subset of n ≤ N principal directions sufficient
to describe a percentage of the variability of the population. New instances in the
statistical atlas can be generated from I = Ī ◦ ϕ where ϕ = exp

(∑n
i=1 α(i)u(i)

)
and α(i) are chosen within [−3s(i), 3s(i)].

4 Results

4.1 Datasets

In order to evaluate the performance of diffeomorphic registration and atlas es-
timation, a set of 15 T1-MRI images was used. The images were acquired using
a General Electric Signa Horizon CV 1.5 Tesla scan. As preprocessing steps, the
images were resampled yielding an spatial resolution of 0.9 × 0.9 × 0.9 mm, the
skull was removed from the images using [18], the image intensity was normalized
using a histogram matching algorithm, and aligned to a common coordinate sys-
tem using a similarity transformation (7 dof). We present the results in the 2D
axial slices shown in Figure 1.

Table 1. Average and standard deviation of the relative L2 differences, RSSD, and the
extrema of the jacobian determinant, Jmax, Jmin. Left and right tables show the results
obtained with EI0↔I1(v(t)) and EI0↔I1(w), respectively.

1/σ2 RSSD Jmax Jmin

1e4 0.57 ± 0.03 3.24 ± 0.50 -0.12 ± 0.06

2.5e4 0.41 ± 0.03 5.13 ± 1.00 -1.16 ± 0.48

5e4 0.33 ± 0.02 6.90 ± 1.29 -3.78 ± 2.10

7.5e4 0.29 ± 0.02 8.43 ± 2.25 -7.03 ± 4.45

1e5 0.27 ± 0.02 9.42 ± 2.92 -9.05 ± 5.30

1/σ2 RSSD Jmax Jmin

1e4 0.56 ± 0.03 3.76 ± 0.64 0.23 ± 0.04

2.5e4 0.38 ± 0.03 6.54 ± 1.56 0.09 ± 0.03

5e4 0.27 ± 0.03 8.04 ± 1.66 0.04 ± 0.03

7.5e4 0.22 ± 0.03 9.59 ± 2.40 -0.03 ± 0.22

1e5 0.19 ± 0.03 10.65 ± 2.62 -0.13 ± 0.33

4.2 Diffeomorphic registration performance.

In this experiment, we compare the inverse consistent version of the diffeomorphic
registration in [15] (EI0↔I1(v(t))) with our method (EI0↔I1(w)). The quality of the
registration is measured with parameters based not only on the final image match-
ing but also on the transformation smoothness. These performance parameters are
strongly influenced by the selection of the scaling parameter σ. The experiment
consists in the registration of one of the images in our dataset to the rest of images
with several values for σ. The image matching is quantified from the relative L2

differences, RSSD = (1/2)(‖I0◦ϕ−1−I1‖L2 +‖I1◦ϕ−I0‖L2)/‖I0−I1‖L2 , and the
smoothness of the transformation is measured from the extrema of the jacobian de-
terminant associated to the inverse transformation, Jmax = max(det(Dϕ−1)) and
Jmin = min(det(Dϕ−1)). Table 1 presents the average and standard deviation of
these measurements. Registrations with better performance are those where the
relative differences are low while the jacobian determinant remains greater than
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zero. In the following, we select the parameter 1/σ2 equal to 5e4, that guaran-
tees the transformation invertibility with maximum matching for our algorithm.
In Figures 2 and 3 we show a representative example of diffeomorphic registration
with this parameter setting.

I0 I0 ◦ φ(1)−1 I0 ◦ φ(1)−1 − I1 I1 ◦ φ(1) I1 ◦ φ(1)− I0

I1 I0 ◦ ϕ−1 I0 ◦ ϕ−1 − I1 I1 ◦ ϕ I1 ◦ ϕ− I0

Fig. 2. Illustration of one of the registration experiments with 1/σ2 = 5e4. The first
column shows the template and target images used for registration. The upper row shows
the results obtained with EI0↔I1(v(t)). The lower row shows the results obtained with
EI0↔I1(w)). To be comparable, the rank of the differences has been normalized to the
same intervals.

4.3 Average atlas estimation.

In this experiment, we present the average and the modes of variation estimated
with the method proposed in Section 3. Figure 4 shows the average atlas in contrast
with the linear average of the sample images, and the images associated to the
modes of variation.

det(Dφ(1)−1) grid detail det(Dϕ−1) grid detail

Fig. 3. Jacobian determinant (represented in logarithm scale) and grid details of one of
the registration experiments. The two leftmost figures show the results obtained with
EI0↔I1(v(t)). The two rightmost figures show the results obtained with EI0↔I1(w)).

5 Discussion and conclusions

In this article, we have presented a framework for diffeomorphic registration and
statistical atlas estimation based on the Riemannian geometry of the infinite di-
mensional Lie group of diffeomorphisms. The method for diffeomorphic registration
estimates the optimal transformation connecting two anatomical images in one-
parameter subgroups of diffeomorphisms and, therefore, can be computed from
the exponential map of its infinitesimal generator. In contrast, traditional meth-
ods for diffeomorphic registration consider that the transformations are made of
composition of geodesics associated to time varying vector fields. The performance
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of our algorithm has been compared with one of these methods [15] in a set of
15 axial MRI slices. Although both algorithms present similar accuracy (average
RSSD < 30%), all transformations obtained with the method using time vary-
ing vector fields are not invertible and, therefore, not diffeomorphic. Even though
the set of diffeomorphisms associated to time varying vector fields includes the
set diffeomorphisms associated to stationary vector fields, the performance in our
dataset is better in the last case. Besides, our algorithm provides a considerable
reduction of the computational requirements for diffeomorphic registration.

Our method for diffeomorphic registration has been included in a framework
for the computation of the average and the modes of variation of a population of
images. The framework generalizes existing techniques for statistical analysis in fi-
nite dimensional Lie groups to infinite dimension. Some other works have proposed
methods for the computation of the average atlas based on diffeomorphic registra-
tion different from ours in the strategies for registration, selection of the reference
image and the manifold in which the gradient descent is performed [8–10]. These
algorithms usually assume that the diffeomorphisms are associated to time vary-
ing vector fields. From our experience, the registration constitutes a critical stage
in the computation of the average and, therefore, our algorithm for diffeomorphic
registration could improve the performance in these algorithms while introduc-
ing computational efficiency. In addition, the logarithm map is not well defined
for diffeomorphisms associated to non stationary velocity fields. Therefore, these
methods cannot guarantee the convergence to the population average defined as
the minimization of the amount of deformation and the modes of variation cannot
be computed in their framework.

In our work, the resulting average atlas is presented in comparison to the linear
average image. As long as the anatomical details in the linear average are blurred,
the details in the average atlas remain sharp while representing the average of the
population of images. While the average atlas presents a left-right lateral sym-
metry the dominant modes of variation present both symmetric and asymmetric
deformations visible at the lateral ventricles and the cortex. Finally, it is interest-
ing to remark that the anatomical variability within the population of images is
illustrated by the modes of variation and non-plausible images are absent in the
first six modes of variation.

The experiments presented in this article were performed in 2D axial slices.
Although the methodology is straightforwardly applicable to the 3D case, we found
that the computation of the diffeomorphic registration and the logarithm map are
unaffordable in a standard computer and a reasonable interval of time. We are
currently working in a multiresolution strategy for registration and an algorithm
for the computation of the logarithm map in order to reduce the computational
requirements and provide results in 3D datasets.
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