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Abstract

With the increasing use of the electrocardiographic signal �ECG� as a diagnostic tool in cardiology�

there exists a requirement for e�ective ECG compression techniques� The goal of any data compression

system is to maximize compression while minimizing distortion� Orthogonal expansions is a tool

widely used because its compression capacity in recurrent signals� In this paper we analyze the

e�ect of noise in orthogonal expansions of ECG signals� When the observed signal is embedded

in additive noise� distortion measurements� such as the mean square error� are not a monotonic

decreasing function of the number of transform coe�cients� due to the noise presence� We analyze

and compare two di�erent ways to estimate the transform coe�cients� inner product and adaptive

estimation with the LMS algorithm� For stationary signals� we demonstrate and quantify the superior

performance obtained by the adaptive system when low values of the step�size are used � � �lim�

For non�stationary signals� we propose� based on experimental results� values of the LMS step�size �

depending on the noise characteristics and the signal to noise ratio� Theoretical results are contrasted

with a simulation study with actual ECG signals from MIT�BIH Arrythmia database and three kinds

of noise� simulated Gaussian white noise� and two records of physiological noise that essentially

contains electrode motion artifacts and muscular activity�

� Introduction

The great amount of data obtained when recording ECG signals leads to the need of data compression

techniques for storing� transmitting and analyzing the data� without loss of clinical information� For

example� a typical Holter recording �two leads� �� hours long� ��� Hz of sampling rate and �� bits of

precision� needs more than ��� MBytes of memory for storing the data� Therefore� data compression

systems will be very useful if they can reduce this volume of data removing redundancies from the signal�

Jalaleddine presented in ���� ��� a very good review of data compression techniques for ECG signals

and he classi�ed them into three major groups� a� direct methods� b� transformation using orthogonal

functions and c� parameter extraction� The most used techniques for ECG signals concern with the two

�rst ones� because they are reversible processes that permit a subsequent reconstruction of the signal for

later analysis� Many algorithms based on direct methods were proposed in the �rst years of ECG data

compression ����� because they are quite simple and can be implemented easily on real time systems�

With the increasing calculation power of computers many algorithms for ECG data compression using

orthogonal transforms have been designed during the last decade ������ showing its superior performance

respect to direct methods�
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In this work we analyze the e ect of additive noise on orthogonal transform based compression of

ECG signals� An increase of the number of basis functions in the orthogonal transform representation

reduces distortion� or equivalently� improves the signal quality� When the observed signal is corrupted by

noise� not only the reconstructed signal energy increase for larger values of the number of basis functions

but also the noise energy increase ����� If all the signal�space basis functions are used by the transform

coder� the distortion� evaluated as the di erence between the reconstructed signal and the original clean

signal� will be equal to the noise energy� In consequence� there will be an optimum number of coe!cients

�and then of basis functions� that will minimize the distortion� Quadratic error indexes ����� such as the

mean square error �MSE�� have become standard in order to quantify distortion� When we compress

noisy signals we want to extract only the information from the original clean signal� If we use the MSE

index between the reconstruction and the observed noisy signal we can get high values of MSE due to

the presence of the unwanted noise� that do not represent the actual distortion between the original

clean signal and its reconstruction� In this work we propose a simulation study where we generate noisy

signals from actual ECG records from MIT�BIH Arrythmia database ����� Three di erent noise sources

are considered� simulated Gaussian white noise and two records of physiological noise that essentially

contains electrode motion artifacts and muscular activity� The MSE index will be measured between the

reconstruction and the original clean signal�

In section � it is presented a brief review of orthogonal transform compression systems� In next sections

we describe and compare the performance of two classical ways to estimate the transform coe!cients�

the inner product and an adaptive estimation with the LMS algorithm� Expressions for the MSE for

clean and noisy ECG signals are derived for both estimation methods� The LMS algorithm steady�state

performance for stationary signals is analyzed and compared with the classical inner product in section ��

For the selection of the LMS step�size � we give an expression of the limit value �lim that gets same

steady�state performance than inner product� The operation of the LMS algorithm in a non�stationary

environment is also analyzed in section � with a new criteria for the optimum step�size � selection�

Finally� theoretical results are contrasted in a simulation study with actual ECG signals from MIT�BIH

Arrythmia database�

� Truncated orthogonal expansions of ECG signals

In order to apply an orthogonal transform to the ECG signal it is necessary to make some preprocessing

steps in order to segment the signal in vectors� Each heartbeat is treated as a separated vector� This
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requires that the position of each QRS complex be determined prior to the compression phase� QRS

complexes were detected and labeled using Aristotle software ����� All beat vectors are aligned with

respect to the �ducial point of the QRS complex� and the beginning of the vector is established with

di erent criteria for di erent detected morphologies� For normal beats� the beginning of the window

was de�ned ��� ms prior to the QRS �ducial point� All signal vectors are zero�padded to the maximum

heartbeat length �N samples�� Figure � shows one example of the ECG signal segmentation� More details

of the segmentation for other morphologies can be found in �����
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Figure �� Beat segmentation for ECG data compression�

The operation of an orthogonal transform data compression system is illustrated in Fig� �� The ECG

signal vector X � �x�� x� � � � � xN���
T is operated on by the orthogonal transform T� to produce the

transform vector C � �c�� c� � � � � cN���
T � The elements of C are the magnitude of the projections of X

vector onto the basis formed by the rows of T� The purpose of the transformation is to convert the data

vector X into a transform coe!cient vector which can be optimally quantized� Typically the components

of X are correlated and the transformation T tries to decorrelate the signal samples and also to pack

the signal energy in a few transform coe!cients� The reconstructed signal XR can be obtained with

the inverse transform T�� applied to the quantized p coe!cients� In this work we will not consider the

quantization step Q� and we will only analyze the e ect of noise on truncated orthogonal expansions

of ECG signals� The mean square error between the rank p approximation XR and X is the energy

represented in the discarded coe!cients

MSEp �
�

N

N��X
i�p

c�i � ���

In order to outperform the compression ratio the transform coe!cient series corresponding to the

subsequent heartbeats can be di erentially quantized using some algorithms like DPCM or LPC �����
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Figure �� Block diagram of an orthogonal transform data compression system�

To reduce the transients in the series of coe!cients originated by ECG morphology changes we inde�

pendently apply the transform coder to each heartbeat series with the same morphology� The heartbeat

morphologies �normal beats� ventricular beats and so on� are labeled with the softwareAristotle �����

Data compression systems have a general trade�o between distortion and compression ratio� When

transform coding schemes are applied it is very important to select the orthogonal transform T that

can represent the maximum amount of signal energy with the minimum number of coe!cients� Several

orthogonal transforms T have been applied to ECG signals� Discrete Cosine Transform �DCT� �����

Legendre Transform �LT� ����� Hermite Transform �HT� ����� Karhunen�Lo�ve Transform �KLT� ���� ����

In this work we have selected the KLT� but equivalent results� in terms of noise behavior� can be obtained

for the other orthogonal transforms� The KLT minimizes the cost function

� � Efje�k�j�g � Efjx� �x�k�j�g ���

where �x�k� is the approximation of x�k� with a linear combination of p orthogonal functions� The KLT

is optimal in the sense that it needs the minimum number of coe!cients for a given MSE ���� ����

The KLT is a signal dependent transform and its basis functions are calculated as the eigenvectors of the

covariance matrix of a training set of signals� In the KL domain the transform coe!cients are uncorrelated

�the covariance matrix is diagonal�� thus redundancies are removed� The eigenvalues of the covariance

matrix are the expected values of the squared KL coe!cients at the training set� giving a measure of

the importance of each function in the linear combination for representing the signals at the training

set� Sorting the basis functions �eigenvectors� in decreasing order of eigenvalues and selecting the more

signi�cant ones we can get a good representation of the signal with a reduced number of coe!cients� In

consequence� the KLT de�nes the domain where the signal energy is more concentrated�

The KL basis functions for the ECG signal were calculated from a large training set with over �������

beats from MIT and European ST�T databases� and some records from people non cardiac diagnosed�

If we consider independent signal vector series from individual beat morphologies in order to estimate

the covariance matrix and calculate the basis functions of the KLT� we get a better performance than

only considering one basis for all kinds of morphologies� This result is because we need lower number of
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functions for representing an homogeneous pattern space than a non�homogeneous one� The morphologies

of the �rst KL basis functions for normal beats are quite similar to the most frequent morphologies of

normal beats �see Fig� ��� The sampling rate was ��� Hz and the maximum heartbeat length was ���� ms

�N"��� samples��

0 200 400
n samples

Arb
itrar

y un
its

KL
0

0 200 400
n samples

KL
1

0 200 400
n samples

KL
2

Figure �� The �rst three KL basis functions for normal beats�

We have recently demonstrated that truncated orthogonal expansions of recurrent signals� like ECG�

are equivalent to apply a linear time�variant periodic �lter to the input signal ����� The time variant

transfer function of the system can be easily calculated from the basis functions used in the expansion� In

next sections we analyze the performance of two classical methods to estimate the transform coe!cients�

inner product and adaptive estimation with the LMS algorithm�

� Inner product estimation

If noise N � �n�� n�� � � � � nN���
T is added to the input ECG signal X� the MSE between the original

clean signal X and the reconstructed signal XR will have now two components �����

MSEdirect
p �

�

N

N��X
i�p

c�i �
�

N

p��X
i��

��i � ���

where �i are the coe!cients of the noise in the transformed domain� The �rst component is the truncation

signal error �the same than in equation ����� and the second one is due to the noise represented in the

approximation� If we are interested in the reconstruction with p basis functions we obtain a contaminating

noise energy

NOISEdirect
p �

�

N

p��X
i��

��i � ���

Three di erent kinds of noise have been considered in this work� simulated Gaussian white noise�

muscular noise and motion artifact noise� White noise is arti�cially generated� but more realistic sources
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of noise present in ECG signals are also considered as electrode motion and muscular noise� Noise data

was obtained from two records of MIT�BIH database �Noise Stress Test database� ����� These records

were obtained using a Holter recorder on an active subject� with leads placed so that the subjects ECG is

not visible� Record #em contains electrode motion artifact �usually the result of intermittent mechanical

forces acting on the electrodes�� with signi�cant amounts of baseline wander and muscle noise as well�

Record #ma contains primarily muscle noise �EMG�� with a spectrum that overlaps that of the ECG�

but extends to higher frequencies� In Fig� � there is an excerpt of these two noise records�

Grid intervals: 0.2 sec, 0.5 mV Grid intervals: 0.2 sec, 0.5 mV

�a� Record em �electrode motion� �b� Record ma �muscular activity�

Figure �� Excerpts of noise records�

In order to represent the noise energy distribution in the KL domain� we averaged the square KL coef�

�cients representation from ��� contiguous windows ����� ms long� of noise �equivalent to ��� seconds��

The noise windows were not aligned with any criteria� because we considered that noise was uncorrelated

with the ECG signal�

The MSEdirect
p component due to the presence of noise in the KL domain is represented in Fig� �

�values of MSE are normalized to the noise energy�� White noise presents a linear behavior as it was

expected since its contribution is equally distributed at any domain� In contrast� the energy of em and

ma noise is more concentrated in the �rst KL functions� so their representations in the KL�domain will

be more overlapped with the ECG signal than white noise�
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Figure �� MSEdirect
p noise component in the KL domain for three kinds of noise�
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In Fig� ��a� it is shown the total MSEdirect
p and its two components �signal error and noise error�

when Gaussian white noise is added to the original signal with a signal to noise ratio of SNR"�� dB�

The SNR was measured as the classical ratio between signal and noise power� The values of MSEdirect
p

were obtained using the equation ���� taking the eigenvalues of the covariance matrix which represent the

ECG signal at the training set �they are the squared expected values of the coe!cients� and the noise

representation in Fig� �� Due to the presence of white noise in the input signal� reconstructions with

p"�� KL functions have lower values of MSE than those ones with p"�� functions� Thus the number of

coe!cients must be selected carefully and accordingly to the amount of noise present in the signal� In

Fig� ��b� we represent the values of the total MSEdirect
p for white noise with several values of SNR� It

can be seen that there is an optimum value of p �p�� that minimizes the MSEdirect
p of noisy signals� The

optimum value depends on the transformed representation of both signal and noise� and the SNR of the

input signal� It is clearly seen that the optimum number of coe!cients �p�� decreases as the SNR also

decreases� Moreover� the selection of the optimum number of coe!cients has di erent sensitivity because

of the error curve slope�
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Figure �� MSEdirect
p for ECG signals contaminated with simulated Gaussian white noise�

The SNR of the reconstructed signal will be

SNRdirect
p �

Pp��
i�� c

�
iPp��

i�� �
�
i

�

Pp��
i�� c

�
i

p ��
���

where the last equality holds for the case of white noise with variance ��i � ���

Similar results of MSEdirect
p can be also obtained for physiological colored noise� The MSEdirect

p

values for physiological noise are higher than for white noise because now signal and noise representations

are more overlapped in the KL domain �see Fig ��� Also an optimum p� value can be obtained that

minimizes MSEdirect
p �
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Figure �� MSEdirect
p for ECG signals contaminated with �em� and �ma� noise with several values of SNR�

� Adaptive coe�cient estimation with the LMS algorithm

Adaptive estimation of quasi�periodic signals� such as ECG� is a wide spread technique for estimating

signals embedded in uncorrelated additive noise ���� ���� This technique has been applied to the analysis

of ECG signals ���� ��� and evoked potentials ����� It makes use of the recurrent behavior of the signal

and it is based on the adaptive linear combiner �ALC� ����� Figure � shows this process in schematic

form� The adaptive �lter input signal �the primary input� d�k�� consists of subsequent concatenated

noisy observed heartbeats� Short beats are lengthened by appending zeroes as necessary� so that a new

beat begins every N samples� The adaptive system dynamically estimates the amount of each reference

input e	i�k� present in the input signal� The reference inputs fe	i�k� �i � 
� � � � � p � � � N � ��g are the
periodic extension of the basis functions used to represent the ECG signal� In ���� the reference inputs

were the orthonormal Hermite functions� in ���� ��� unit impulses� and in ���� ��� sine� cosine and Walsh

functions� In the present study� the reference inputs are the KL basis functions of the ECG signal� The

output of the adaptive �lter� y�k�� is the signal that we want to be an estimate of s�k�� and e�k� is the

error signal e�k� � s�k� � n�k�� y�k� with

y�k� �

p��X
i��

Wi�k� e	i�k� � ���

When any adaptive algorithm is used to minimize the mean square error � � Efje�k�j�g and the input
signal is stationary� the weight vector W converges to the Wiener optimal solution W� � R��P �����

where

R � Efe��k�e�T �k�g and P � Efd�k� e��k�g ���
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Figure �� Adaptive linear combiner for estimating the KL coe�cients�

and e��k� denotes the vector of reference signals at instant k

e��k� � �e	��k�� e	��k�� � � � � e	p���k��
T � ���

In this case� given the orthonormality conditions of the basis functions and the lack of correlation assumed

between the noise n�k� and the basis functions e	i�k�� the mean value over a signal occurrence of R and

P reduce� to

R �
�

N
I and P �

�

N
�c�� c�� � � � � cN���

T � ���

being ci the transform coe!cients of the s�k� signal� The optimal weight vector� W�� that minimizes

the mean square error isW� � �c�� c�� � � � � cN���
T � This result means that the steady�state value of each

weight W �

i is an estimation of the i�th transform coe!cient of s�k�� Thus the steady�state weight vector

is a characterization of the deterministic signal component in the transformed domain� and the output

signal y�k�� in the optimum case� takes the value

y��k� �

p��X
i��

W �

i
e	i�k� �

p��X
i��

ci e	i�k� � ����

i�e�� the projection of s�k� onto the subspace spanned by fe	i�k�� i � 
� � � � � p� �g with p � N � Therefore�

y��k� is the rank p transformed domain representation of s�k�� and y��k�� s�k� when p�N �i�e�� if all of

the basis functions are used in the expansion��

The minimum mean square error� �min� will be

�min � Efd��k�g �PTW� �
�

N

N��X
i�p

c�i �Efn��k�g � ����

�A more detailed analysis with the actual time�variant behavior of R�n� can be found in ����� In consequence� all the
results obtained �steady�state misadjustment� convergence time� etc�	 with this approximation must be interpreted as mean
values over a signal occurrence�
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The remaining noise due to the misadjustment �M � depends upon the adaptive algorithm used to adjust

the weight vector ����� In this study� we use the LMS algorithm for updating the coe!cients�W�k��� �

W�k� � �� e�k� e��k�� because it gets the best trade�o between simplicity and convergence time� The

condition that assures the convergence of the LMS algorithm ���� is 
 � � � N
p�� � The time constant

for the convergence of the MSE is �mse � �

��� � N
�� samples where 	 � �
N is the eigenvalue of the

matrix R �all the eigenvalues are identical�� Thus� the gain constant � controls the stability and the

speed of convergence�

To measure the steady�state excess of mean square error �ex we calculate the misadjustment� which

for the LMS algorithm can be approximated by ����

M �
�ex
�min

� � tr�R�

�� � tr�R�
�

� p

N � � p
� ����

The steady�state mean square error � is

� � �min � �ex � �min�� �M� �
�� �

N

N��X
i�p

c�i �Efn��k�g
�A �

� �
� p

N � � p

�
����

But in this application we are interested in evaluating the energy of the di erence signal between the

original clean signal and the reconstruction e��k� � s�k� � y�k�� From the expression of e�k� we get that

e�k� � e��k� � n�k� � s�k�� y�k� � n�k� and taking square expected values we get

� � Ef�s�k�� y�k���g�Efn��k�g� �Ef�s�k�� y�k��n�k�g

� MSELMS
p �Efn��k�g� �Efy�k�n�k�g � ����

The ALC with deterministic reference inputs is equivalent to a linear system ����� and therefore the

output signal� y�n�� can be decomposed as the sum of the outputs ys�k� and yn�k� corresponding to the

inputs s�k� and n�k� respectively� The output ys�k� is deterministic because in these case both inputs �s�k�

and e��k�� are deterministic� Thus the last term in equation ���� can be evaluated as

Efy�k�n�k�g � Ef�ys�k� � yn�k��n�k�g

� Efyn�k�n�k�g � ����

In the particular case of white noise� this term is null as it was demonstrated in ���� ���� Therefore� the
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mean square error between the original clean signal and the reconstructed signal with the LMS algorithm

for white noise will be

MSELMS
p � � �Efn��k�g � �

N � � p

N��X
i�p

c�i �
� p

N � � p
�� � ����

Two di erent terms can be considered in ����� the �rst one is due to the truncation signal error and

the second one is due to the presence of noise in the input signal and misadjustment of the adaptive

algorithm� There is a clear a trade�o in the selection of the number of functions p� in a similar way than

for inner product in equation ���� high values of p reduces the �rst term� but also increases the second

one� The noise in the reconstruction will be� analogous to equation ����

NOISELMS
p �

� p

N � � p

�

N

N��X
i�p

c�i �
� p

N � � p
�� � ����

The SNR of the estimated signal y�k� after convergence can be calculated as

SNRLMS
p �

�

N

Pp��
i�� c

�
i�

�p
N��p

��
�

N

PN��

i�p c�i � ��
� � ����

Equations ������� are derived after the convergence of the weights with stationary signals and white

noise� Experimental results with non�stationary signals will present some di erences�

� Comparison of inner product versus the LMS algorithm

In this section we compare the performance of the two methods for estimating the coe!cients� inner

product and adaptive estimation� Both techniques have some advantages and some drawbacks� The inner

product follows the dynamic changes of the signal because it is the beat�to�beat projection of the signal

vector onto the subspace of analysis� The dynamic changes of the ECG signal are directly shown in the

evolution of the coe!cients in the transformed domain� The main drawback of the inner product is that

both signal and noise components are projected in the same way� so the reconstructed signals will be

noisy� In contrast� the adaptive estimation of the coe!cients can attenuate the noise uncorrelated with

the signal achieving an improvement of the signal to noise ratio� But in this case the adaptive algorithm

needs a period of time for the convergence� This is the well�known adaptive algorithms trade�o � signal

to noise ratio improvement at steady state �related to � value� versus time of convergence�
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In order to compare both techniques we calculate the value of the step�size parameter of the LMS

algorithm ���lim that gets the same value of SNR at the output signal than the inner product� Using

equations ��� and ���� the improvement of SNR of the LMS algorithm versus inner product at the

reconstructed signal in the case of white noise will be

SNRLMS�direct
p �

SNRLMS
p

SNRdirect
p

�
p
N ���

�p
N��p

��
�� � �

N

PN��

i�p c�i

� � ����

and doing SNR
LMS�direct
p � � we get the value of the step�size

�lim �
N ��

�N � p��� � �

N

PN��

i�p c�i
� ����

It can be seen from equation ���� that when the complete expansion is used �p�N� then SNRN �

���
� � �

M � and this factor is equal to one for �lim�
��� This result can be corroborated in equation �����

When the noise energy is much more important than truncation signal error� the LMS algorithm has

more advantages because it attenuates more e!ciently the noise energy than direct estimation� As a

consequence of that� the value of �lim for noisy signals �low values of SNR� is higher than for cleaner

signals� The convergence condition must be accomplished for convergence of the algorithm� For low

values of p� signal truncation error becomes more important� and the value of �lim decreases� If a value

of ���lim is selected the adaptive estimation of the coe!cients gets cleaner reconstructed signals ����

than inner product ��� for stationary signals� If the step�size is selected as ���lim� it can be demonstrated

that after some manipulation on equations ���� ���� and ���� the reconstruction error �MSEp� for inner

product and the LMS algorithm will be the same

MSELMS
p

�
���lim

� MSEdirect
p � ����

The values of �lim for the KLT of ECG training set with various levels of white noise are shown in Fig� ��

These values have been calculated from equation ���� and the eigenvalues of the covariance matrix�

The performance of both estimation techniques can be compared in Fig� ��� We consider two di erent

values of SNR ��� and �� dB� and three di erent values of step�size � ����� ��� and ����� for the LMS

algorithm� We can see in Fig� � that for SNR"�� dB� �lim"���� at p"�� and p"���� Moreover� using

equation ���� for these values of p we should obtain the same value of MSE for inner product and the

LMS� as it can be seen in Fig� ���a�� Similarly� for SNR"�� dB� �lim"���� at p"�� and ���� and
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improvement of LMS versus direct estimation is larger�
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Figure ��� Values of MSE
LMS�direct
p for white noise�

In summary� the analytic results show that the LMS algorithm with a value of � � �lim gets lower

values of steady�state MSE than inner product for stationary signals� It can be seen that when the whole

basis is used �p�N � the MSEN improvement ratio of LMS versus direct estimation is �
��� � but greater

improvement can be achieved at lower values of p� For signals with low values of SNR� the performance

of the LMS algorithm can get a great improvement over the inner product estimation if a low value of �

is selected�

From the stationary analytic results it is concluded that the best selection of the step�size � will

correspond to as low as possible values� However� the choice of a very small � could have problems with

the dynamic ECG changes and would increase the value of MSE� Then a study with real non�stationary

signals is required�

� The LMS algorithm with non�stationary signals

The non�stationary behavior of the ECG signal can be understood as beat�to�beat morphology

changes� In this situation� the LMS algorithm has the task of not only seeking the minimum point of the

error performance surface but also tracking the beat to beat changing position of the minimumW�� The
optimum weight vector will be �xed during the N samples of every heartbeat �ECG signal occurrence��

and it will suddenly change with every new heartbeat�

The selection of the step�size � will have now a trade�o between noise reduction capability �requiring

low values of �� and speed of adaption to track the time variant optimum weight vector �requiring

high values of ��� In this situation we do not have in�nite time for updating the weights as it was in

sections � and �� We update the weight vector during N samples �heartbeat duration� and then we will
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reconstruct the signal with the value of the weight vector at the end occurrence timeW�iN ��

The convergence analysis of the LMS algorithm have been previously analyzed by many authors�

being an active research area� Some of the papers deal with stationary signals �in�nite adaptation time

is available� with either random inputs ���� ��� ������� or deterministic inputs ���� ���� Other papers

deal about slow time�varying signals where the signal dynamics is modeled with random walk ������� or

Markov chains ����� However� very few authors have analyzed the MSE of the LMS algorithm after a

�nite number of iterations ����� as it is the actual situation in many applications�

In our application we are interested in evaluating the mean square error between every occurrence i

of the original signal and the reconstruction using the p � � weight vector at the end of the occurrence

W�iN �� i�e��

Jp �
N��X
k��

�s��i� ��N � k�� y���i� ��N � k��
�


 � k � N � � ����

where y���i� ��N � k� �WT �iN �e��k�� This cost function di ers from standard ��k� � Efe��k�g� because
Jp is a global distortion measure over the whole i�th signal occurrence when the signal is reconstructed

with the weight vector at the end occurrence time W�iN �� while ��k� is an instantaneous distortion

measure using the instantaneous output signal y�k�� We use vectors �bold letters� to denote signals� like

s � �s�s� � � � sN���
T � Then the cost function can be written as

Jp � �s� y��T �s� y�� � �s�MTW�iN ��T �s�MTW�iN �� � ����

whereM is the p�N matrix of orthogonal basis functionsM � �e��
� e���� � � � e��N�����

The weight vector at the end of the occurrence can be calculated applying N times the weight vector

update equation of the LMS algorithmW�k � �� �
�
I� �� e��k�e�T �k�

�
W�k� � �� d�k�e��k�� giving

W�N � �

	
N��Y
k��

�I� ��e��k�e�T �k��



W�
� � ��

N��X
k��

d�k�

	
N��Y
i�k��

�I� ��e��i�e�T �i��


 e��k� � ����

where the time origin has been selected at the beginning of the signal occurrence for simplicity� W�N �

only depends on the step�size �� the primary input signal d and the initial weight vector W�
�� The

terms
Q

k�I� ��e��k�e�T �k�� of equation ���� can be calculated a priori because they only depend on the

basis functions� Given an initial weight vectorW�
� and the primary input signal d� the weight vector at

the end occurrence timeW�N � is an N �degree polynomial of � �see equation ����� where the coe!cients
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are matrices and vectors respectively

W�N � �
�
I� ��A� � �����A� � �����A� � � � ��W�
� � ��B� � �����B� � �����B� � � � � ����

The matrices Ai depend only on the basis functions while the vectors Bi also depend on the primary

input signal d�

Looking at one signal occurrence� we will have an initial weight vector W�
� �result of the previous

occurrence adaptation� that is far from the optimum weight vector W� of the current occurrence� may

be due to abrupt signal changes� In this situation the adaption time is �nite �N samples� and we would

like to select the optimum value of the LMS step�size � that minimizes the cost function Jp�

Firstly� we consider the special case of complete expansions �p�N � as an introduction� and afterwards

the more general case of non�complete expansions case is discussed�

��� Complete expansions

This particular case is not interesting for data compression because there is no rank reduction� but

several authors have studied it for �ltering applications using impulses as basis functions ���� ��� ��� ����

When all basis functions are used in the expansion �p�N � equation ���� can be greatly simpli�ed because

A� �
PN��

i��
e��k�e�T �k� � I� A��A�� � � ��AN �� because of the orthogonality property of the basis

functions e�T �i�e��j� � �ij being �ij the Kronecker delta function� and B��Md� B��B�� � � ��BN ��

�due to the same orthogonality property�� giving the equation

W�N � � ��� ���W�
� � ��Md � ����

Now we can study the selection of the optimum value of � that minimizes JN � In this case the cost

function will be

JN � �s� y��T �s� y�� � �s�MTW�N ��T �s�MTW�N �� � ����

whereW�N � is given in ����� The value of the step�size � that minimizes JN is found forcing zero at the

�rst derivative �JN
�� obtaining

�opt �
�

�

�W�
��Ms�T �W�
��Ms� � �W�
��Ms�TMn
�W�
��Md�T �W�
��Md� � ����
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If we calculate the second derivative we obtain

��JN
���

� � �W�
��Md�T �W�
��Md� � ����

that is always positive� thus �opt is the minimum of the cost function JN � Equation ���� can be geomet�

rically interpreted as the ratio of inner products of the transform domain vectors shown in Fig� ���

When the observed signal d is equal to the desired signal s �we do not need adaptive �ltering at all

because there is no noise� the optimum value is �opt �
�

�
� This value of the step�size makes the LMS

algorithm equivalent to the inner product because W�N � � Md according to equation ����� Moreover�

the mean square error JN is zero� because all the basis functions are used in the expansion�

When noise is present n�d�s� we have a trade�o between tracking capability and misadjustment�

When the noise vector norm �noise energy� is much larger than the beat�to�beat morphology changes

�Fig� ���a��� �opt will be much lower than ��� in order to reduce the noise energy� In this case a good

initialization of the weight vector W�
� is the weight vector from the last signal occurrence �like in the

classical LMS� that contains information of previous signal occurrences� The opposite case will be when

the noise energy is low compared with the morphology signal change �Fig� ���b��� and the optimum value

will be near to �opt"���� In this case a good initialization of the weight vector of every signal occurrence

is the inner product of the noisy observed signal occurrence W�
� � Md� The LMS algorithm will try

to reduce the noise energy during the adaptation time �N iterations�� If all basis functions are used for

updating the coe!cients with the LMS algorithm the weight vector at the end occurrence time will be

W�N � � ��� ���Md� ��Md �Md � ����

that is the same result than inner product coe!cient vector� independently of the value of the step�size ��

When both� noise and non�stationarities coexist and have similar magnitudes nothing can be said a priori�

and the equation ���� should be evaluated with the actual vectors �signal occurrences��

In section � was announced that the orthogonal compression system is independently applied to each

morphology in order to improve compression applying di erentially coders like DPCM or ADPCM to the

coe!cient time series� So we have independent weight vectors for normal beats� ventricular beats� and

so on� In this situation each weight vector time series will have smaller changes �only due to variations

from beats of the same morphology that may be non�contiguous in time��
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W[0]

Md

Ms
Mn

W[0]

Md

MnMs

�a� High noise and small non�stationarities� �b� Low noise and large non�stationarities�

Figure ��� Geometric interpretation of �opt�

��� Non�complete expansions

When non�complete expansions �p�N � are used� we will obtain a similar conceptual behavior but with

a more complex description� Equation ���� can not be simpli�ed as it was on the complete expansions case�

The linear terms on � �A� and B�� are the same than for complete expansions case �A� � I� B� �Md��

but now the other terms are di erent to null vector �A�� A�� � � � �AN ��� and B�� B�� � � � �BN ����� For
example� the matrix A� will be a sum of terms of the form

�e��i�e�T �i�
��e��j�e�T �j�

�
� rij e��i�e�T �j� ����

where the scalar value rij � �e�T �i�e��j�� �� �ij for non�complete expansions� In the same way� the matrix

A� will be a sum of terms of the form

�e��i�e�T �i�
��e��j�e�T �j�

��e��k�e�T �k�
�
� rij rjk e��i�e�T �k� � ����

The terms B��B�� � � � also have a similar behavior�
The analysis of the optimum value of the step�size �opt for non�complete expansions is now troublesome

due to the non�null interaction between basis functions� Alternatively� we propose a experimental study

to �nd the values of �opt in a training set of simulated noisy ECG signals�

	 Experimental study

In order to study the e ect of noise in estimating the coe!cients of orthogonal transforms it is proposed

the following simulation study represented in Fig� ��� Three di erent kinds of noise have been added to



Olmos et al�� Truncated orthogonal expansions of noisy ECG signals ��

ECG records from the MIT�BIH Arrythmia Database� simulated Gaussian white noise� and two records

of physiological noise� electrode motion �em� and muscular activity noise �ma�� The level of noise

added is much higher than the unavoidable noise present in original records� A data compression system

based on truncated orthogonal expansions is applied to the simulated noisy ECG signals� The MSE index

is evaluated between the reconstruction XR and the clean original signal S� We propose this simulation

because in actual applications we can not get access to the clean signal S�

XR

MSE

N

S=ECG X=S+N+ expansions
Truncated orthogonal

Figure ��� Simulation of additive noisy signals�

��� Simulated stationary ECG signals in white noise

In the �rst step� a simulation is proposed to evaluate the steady�state performance of inner product

and the LMS algorithm only considering stationary ECG signals and white noise� We simulated a

��� heartbeats ECG segment repeating an average beat of record ��� fromMIT�BIH Arrythmia Database�

This signal is perfectly periodic and also deterministic� The length of ��� heartbeats is long enough to the

convergence of the LMS algorithm and the steady�state MSE analysis� We added to it white noise with

several values of SNR ��� �� �� and �� dB�� Both transform coe!cient estimation methods are applied

with a variable number of basis functions� The results obtained for SNR"�� dB are shown in Fig� ���

Theoretical values �sub�gure �a�� are calculated using equations ��� and ���� for the selected beat� There

is a very small di erence between the selected beat and the mean performance for the whole ECG training

set� For the experimental analysis we make �� trials� Mean values and standard deviation of the steady�

stateMSEp are shown in Fig� ���b�� The experimental results for white noise are very close to predicted

values� The reason is that the hypothesis made in the derivation of theoretical expressions �stationarity

of signal and noise� and mutually uncorrelated� were true in this simulation� Experimental results of the

ratio MSE
LMS�direct
p are compared in Fig� ���c� with theoretical values derived in equation ����� It can

be seen that experimental results are well predicted� especially for low values of the step�size ��

If the noise energy is larger� the value of MSEp will be also higher for both estimation methods�



Olmos et al�� Truncated orthogonal expansions of noisy ECG signals ��

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

p KL functions

M
S

E
 (

%
)

µ=0.1

µ=0.3

µ=0.5

µ=0.75

Clean Signal 
Inner product
LMS          LMS

IP 

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

p KL functions

M
S

E
p (

%
)

µ=0.1

µ=0.3

µ=0.5
IP

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

p KL functions

M
S

E
 (

LM
S

) 
/ M

S
E

 (
di

re
ct

)

µ=0.5

µ=0.3

µ=0.1

µ=0.75 Theoretical
Experimen. 

�a� Theoretical results �b� Experimental results �c� MSE ratio

Figure ��� Theoretical�experimental values of MSEp for white noise with SNR��	 dB�

inner product and the LMS algorithm� However� both methods do not increase with the same law� The

equivalent results are illustrated in Fig� ��� We can observe in Fig��� �c� that the maximum improve�

ment of the LMS algorithm versus inner product is a bit more higher than in the case of SNR"�� dB

�Fig� ���c��� and also this maximum di erence is found at lower values of the number of functions� When

complete expansions are used �p�N������ it is corroborated that the improvement of the LMS algorithm

versus inner product is independent of the SNR and only depends on the value of the step�size � �see

equation ������
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Figure ��� Theoretical�experimental values of MSEp for white noise with SNR�	 dB�

The selection of the step�size � in the LMS algorithm should be selected according to the SNR of the

original signal and the number of functions p� For white noise and stationary ECG signals� the best way

for estimating the transform coe!cients is the LMS algorithm with very low values of � because it can

attenuate the uncorrelated noise with a low value of steady�state misadjustment� The limitation is that

the convergence time is high� In actual applications with time�varying ECG signals� the LMS algorithm

will have to track the dynamic signal�
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��� Actual ECG signals contaminated by noise

In order to calculate the optimum value of the LMS step�size �opt for non�complete expansions with

non�stationary noisy ECG signals we select the �rst � min� of �� records from MIT�BIH Arrythmia

database� For every heartbeat and for all values of the number of functions p� we �nd the value of the

step�size � that minimized the cost function ���� using a numerical minimum search� We show in Fig� ��

the mean values of �opt obtained for the three kinds of noise with several values of SNR�
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Figure ��� Mean values of �opt with actual ECG noisy signals�

It can be seen that the mean value of �opt is lower when the noise energy is higher for all kinds of

noise� This behavior is reasonable because when the impact of the noise energy is higher than beat�to�

beat morphology changes� the most e!cient choice of the step�size are low values of � to attenuate the

uncorrelated noise with low values of misadjustment� In contrast� when the e ect of the noise energy is

lower than beat�to�beat morphology changes� higher values of the step�size should be used to increase the

convergence speed to track the dynamic changes�

Once the optimum value of the step�size �opt are determined� we can calculate the MSE obtained with

the LMS algorithm and compare it with the inner product� We show in Fig� �� the MSE improvement

obtained with the LMS algorithm respect to inner product MSE
LMS�direct
p � We observe that now the

improvement is less important than for stationary signals� Even in some conditions �high values of SNR

and white noise� the inner product obtains lower values of distortion�

We can conclude that the adaptive estimation of the transform coe!cients with the LMS algorithm

is more appropriate than inner product for low values of SNR� Moreover� the improvement of the LMS

algorithm is higher for the case of physiological noise than for white noise for p$��� Using typical values

of SNR ����� dB in actual ECG records and number of basis functions between ����� �compression ratio�

of ���������� we obtain that the LMS algorithm is more or less equivalent to the inner product for white

�The value of compression ratio is only an approximation without considering quantization
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noise� but when physiological noise is considered an improvement in MSEp of about ��% for � values

between ��������
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Figure ��� Mean value of the ratio MSE
LMS�direct
p �

We show in Fig� �� an example of original and reconstructed signals with p"�� basis functions� The

original signal is taken from record ��� of MIT�BIH Arrythmia database� It is contaminated with em

noise with a value of SNR"�� dB� The �rst line represents the actual ECG signal� the second line is

the em�noise added to it� Noise morphology is similar to some ECG waveforms� The third line is the

simulated noisy ECG signal �addition of the previous signals�� The last two lines are the outputs of

the reconstructed signals with inner product and the LMS algorithm with �"��� respectively� It can

be clearly seen that inner product can not attenuate the em�noise �for example at the ST�T complex of

the �rst two beats� because the signal and noise KL representations are overlapped� However� the LMS

algorithm obtains a more clean reconstruction�


 Conclusions

In this work we have analyzed the performance of truncated orthogonal expansions for compressing

ECG signals when the input signals are contaminated by additive noise� Due to the presence of noise� the

distortion �evaluated as mean square error between the original clean signal and the reconstruction� has

two di erent sources� signal truncation error and noise error� We have quanti�ed the relative importance

of both terms when a variable number of functions p are used in the expansion� We distinguish two

classical methods for estimating the transform coe!cients� inner product and adaptive estimation with

the LMS algorithm�

A simulation study has been proposed where noisy ECG signals are generated from actual ECG

records from MIT�BIH Arrythmia database and adding three di erent noise sources� simulated Gaussian

white noise� and two records of physiological noise� All derived results are contrasted with simulated
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data�

When the transform coe!cients are calculated using the inner product the e ect of noise in the

reconstructed signal for physiological noise is higher than for white noise because signal and noise rep�

resentations in the transformed domain are more overlapped in the �rst case� and the inner product

estimation can not distinguish between signal and noise� Analytical results of distortion and SNR in the

reconstructed signal for any value of number of functions are given�

We have also considered an adaptive estimation of the coe!cients with the LMS algorithm in order

to reduce the uncorrelated noise� Two di erent situations of the LMS algorithm are analyzed� stationary

�without changes in the deterministic component of the signal� and non�stationary �actual ECG signals

with beat�to�beat morphology changes� input signals�

In the ideal case of stationary signals we have analyzed the steady�state performance of the LMS

algorithm making a comparison with inner product results� We calculate the value of the LMS step�

size �lim that get the same performance than inner product� If the step�size is chosen as ���lim� the

LMS algorithm gets better steady�state performance than inner product�

However� actual ECG records have beat�to�beat morphology changes� and there is not in�nite time

for the adaptation process� We de�ne the distortion for each beat as the mean square error between the

original signal and the reconstructed signal with the weight vector at the end of each occurrence� In the

case of complete expansions� the analytical expression of the value of the step�size �opt that minimizes the

distortion after a �nite�time adaptation process is given� For non�complete expansions only experimental

results are given�

With the shown methodology we can give some practical criteria for the selection of the more ap�

propriate transform coe!cient estimation method �inner product or adaptive estimation� and the choice

of the step�size � for the LMS algorithm� For example� in typical Holter recording� the value of SNR

is around �� dB� and therefore the optimum value of the LMS step�size should be around �"�������

if physiological noise is present with p around �� KL basis functions� The improvement of the LMS

algorithm over the inner product will be around ��% for these operating conditions�
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We show in Fig� �� one example with the values of the cost function J versus � for a case of small
change between two normal beats of record ��� from MIT�BIH Arrythmia database� Both clean signal
and added noise cases are considered using the three kinds of noise �white noise� em and ma� with a
value of SNR"�� dB� For the clean signal case� the optimum value of �opt is ��� �as it was announced
before�� When noise is added to the signal with SNR"�� dB� the level of noise is larger than the signal
change from the �rst beat to the second one� and so the optimum values of �opt will be lower than ���
�similar case than sub�gure ���a��� The mean square error obtained by inner product with a complete
expansion JdirectN � nTn is the same than obtained by the LMS with �"���� that is equal for the three
kinds of noise because all of them have the same value of SNR�
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 with simulated
noise�

If we combine both situations� we can consider a more general initialization of the weight vector of
LMS for non�stationary noisy ECG signals as

W�
� � �W� � ��� ��Md ����

whereW� is the �nal weight vector of previous signal occurrence and � is a weighting factor that gives
relative importance to noise or dynamic changes in the signal� The weighting factor � can be selected
a priori if information of noise level or non�stationarity is available� For example� �decir ejemplos ��� Nota
quizas en HRECG �poco ruido y estacionario por paciente quieto� o pruebas de esfuerzo �super ruidoso
y noestacionario por cambios por movimientos� ambos factores tengan el mismo peso��� +piensas algo a
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priori,�
We can �nd the optimum values of � and � that minimize the cost function JN � Applying the value

of the weight vector at the end occurrence time ���� ant the weight vector initialization in ���� we obtain

W�N � � ��� ���� �W� �Md� �Md �  �W� �Md� �Md � ����

Calculating the cost functions and forcing zero at its �rst derivative �JN
�� we obtain

opt � ��� ��opt��opt �
�W� �Md�TM �s� d�

�W� �Md�T �W� �Md�
� ����

This expression is similar than ����� where the weight vector is initialized with ����� This value correspond
to a minimum point because the second derivative can be easily demonstrated that is positive

��JN
��

� � �W� �Md�T �W� �Md� � ����

	�� Comparison of inner product versus the LMS algorithm

One of the objectives of this manuscript is to compare the performance of two ways for estimating
the coe!cients of orthogonal expansions of noisy ECG signals� Stationary signal case was studied in
section �� Now we will make an approximated analysis for non�stationary ECG signals�

We would like to have a criteria for selecting the step�size � that gets same performance than inner
product ��lim�� The performace can be measured with the cost functions J de�ned in equation �����
The inner product coe!cients are estimated as the projection of the observed noisy signal d onto the
subspace generated by the p basis functions Wdirect �MTd� The mean square error for inner product
Jdirectp will be

Jdirectp � �s� y��T �s� y�� � �s�MTMd�T �s�MTMd�

�

�I�MTM�s�MTMn

�T 
�I�MTM�s�MTMn

�
����

When all basis functions are used �p�N �� we will haveMTM � I and JdirectN � nTn�
A similar expression for mean square error Jp can be obtained for the LMS algorithm

JLMS
p � �s� y��T �s� y�� � �s�MTW�N ��T �s�MTW�N �� ����

where W�N � is given in ����� JLMS
p will depend on the step�size �� the noise present in the observed

signal n�d�s and the initial weight vectorW�
�� The last dependence on W�
� is the di erence from
the stationary case� because now time adaptation is �nite in order to track dynamic changes of the signal�

We could �nd a value of � � �lim that achieves JLMS
p � Jdirectp for non�stationary signals� that is

�lim �
�

�

�W�
��Md�T �W�
��Ms��p
expresion que falta

�W�
��Md�T �W�
��Md�
����

But in this case the expression of �lim is not very useful because now we can not say that JLMS
p is

lower than Jdirectp for � � �lim because of optimum weight vector is time variant due to the beat�to�beat
morphology changes� We shown in Fig� �� the value of �lim for some normal beats of record ��� with
SNR"�� dB of white noise� Falta

The second approach for using non�complete expansions �a bit di erent from the �rst one� can be
interpreted as an approximation for low values of � of equation ����� reducing only to linear terms A�

and B�� This is equivalent to apply the impulse correlated �lter �AICF� ���� ��� in order to remove
non�correlated noise with the recurrent signal� and afterwards making the truncation of p coe!cients�
equivalent to apply the inner product to the output of the adaptive �lter� This approach can be analyzed
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in more detail than the �rst one� because we can use similar expressions than for complete expansion
case ���������� but now the matrix of orthogonal basis functions M will have dimensions �p �N�� and
all the vector norms and inner products will be evaluated in the signal subspace spanned by the reduced
number of functions p� In this case the misadjustment will be larger than in the �rst approach� because
all the weights are used in the adaptation with the LMS algorithm

When we compress noisy signals high values of MSE can be obtained due to the presence of noise
that do not represent real error between original clean signal and reconstruction� Two approaches have
been considered for estimating the coe!cients� classical inner product and adaptive estimation with the
LMS algorithm� Inner product has a higher convergence rate� but the LMS algorithm achieves greater
noise reduction� Three di erent types of noise have been considered� white noise� electrode motion and
motion artifact�

Steady state performance of both approaches have been compared� Analytical expressions for MSEp

and SNRp are derived� The limit value of the LMS step�size �lim is obtained to get same performance
than inner product in stationary signals� If a value of � � �lim is selected� LMS gets lower values of MSE�
The maximum achievable improvement in the MSE of LMS versus inner product is achieved when the
number of functions is low� The improvement reconstruction MSE of LMS versus inner product is higher
for physiological types of noise because in this case signal and noise &KL�spectra' are more overlapped�
So� in actual ECG records where physiological noise is important the improvement of LMS versus inner
product is signi�cant and lead us to consider it as the appropriate tool to compress noisy ECG signals�

In general� an event�related signal can be considered as an stochastic process which can be decomposed
into an invariant deterministic signal time�locked to a stimulus� and an additive uncorrelated noise with
the signal�


