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Abstract— A dynamic model is proposed to study the rela-
tionship between the QT and RR intervals of the surface elec-
trocardiogram. The model accounts for the influence of a 
history of previous RR intervals on each QT, considering that 
such an influence may vary along the recording time. For 
identification of the model parameters, an adaptive methodol-
ogy that uses the regularized Kalman filter is developed. A set 
of risk markers are derived from the estimated model parame-
ters and they are tested on ambulatory recordings of post-
myocardial infarction patients randomized to treatment with 
amiodarone or placebo. The results of our study show that 
amiodarone substantially modifies the QT interval response to 
heart rate changes. Furthermore, the way amiodarone acts on 
QT adaptation allows to identify patients in which treatment is 
being effective and separate them from those in which it is not 
and, consequently, are at higher risk of suffering from ar-
rhythmic death. 
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I. INTRODUCTION  

Numerous studies have pointed out the tight relationship 
that exists between the QT interval, which expresses the 
entire duration of ventricular depolarization plus repolariza-
tion, and the RR interval, which is the inverse of heart rate. 
It has been suggested that characteristics derived from such 
a relationship can be used to detect or predict states associ-
ated with high arrhythmic risk [1]. The use of long-term 
electrocardiographic (ECG) recordings is recommended for 
risk stratification studies based on repolarization analysis  
[2]. Those types of recordings contain sharp changes in 
heart rate and, consequently, QT hysteresis needs to be 
considered when exploring the QT/RR relationship. Hys-
teresis refers to the fact that the QT interval is not able to 
follow the RR interval changes instantaneously but there is 
a time lag in the adaptation.  

In [3] a method was developed to investigate QT changes 
after RR in ambulatory recordings of post-myocardial in-
farction (MI) patients of the EMIAT database that were 
followed-up during a mean time of two years. Using the 
proposed method, several indices characterizing QT/RR 
adaptation, including the time that QT needs to follow RR 

changes, were evaluated. Those indices showed strong ca-
pacity to discriminate between patients at low and high risk 
of arrhythmic death while on therapy with amiodarone.  

Although in [3] the time and profile of QT adaptation 
were considered to be specific of each patient, it was as-
sumed that those characteristics did not vary along the re-
cording time. In order to account for the dynamic properties 
of the QT/RR relationship, a time-variant methodology is 
used in the present paper that extends the one described in 
[3].  Based on that method we have investigated QT de-
pendence on RR over the same recordings of the EMIAT 
database and we have derived new markers characterizing 
QT dynamicity. The potential of those markers for arrhyth-
mic risk stratification is presented. 

II. METHODS 

A. Population and data measurements 

The study population comprises 939 patients of the 
EMIAT database. Patients were survivors of acute MI ran-
domized to treatment with amiodarone or placebo. All of 
them were aged less than 75 years and had a left ventricular 
ejection fraction (LVEF) inferior to 40%. Meaningful clini-
cal data were available in 866 patients who were followed-
up during a mean time of 620 days (±176). Of these pa-
tients, 404 received placebo and 462 were treated with 
amiodarone. There were 26 arrhythmic deaths in the pla-
cebo group and 18 in the amiodarone group. 

The electrocardiographic recordings were obtained one 
month after randomization. All of them were 24-hour Holter 
ECGs with 3 recorded leads. In each lead, individual QT  
and RR intervals were measured using the commercial 
software of Pathfinder 700 Holter system (Reynolds Medi-
cal, Hetford, UK). These measurements where checked by 
an expert and, where necessary, they were corrected manu-
ally or deleted. For each patient and lead, the number of 
cardiac cycles where it was possible to determine both the 
RR measurement and the QT measurement were counted. 
The lead that presented the largest number of accepted beats 
was selected for further analysis. Potential outliers in the 
RR and QT series were removed by applying a procedure 



based on a Median Absolute Deviation (MAD) filter. The 
clean series were interpolated linearly at a sampling fre-
quency of 1 Hz and low-pass filtered (0.05 Hz) to avoid the 
sympathetic and parasympathetic influences of the Auto-
nomic Nervous System. The final series are denoted by 

 and , respectively. (n)xRR (n)yQT

B. Model Composition 

The QT/RR relationship is modeled by considering a 
nonlinear system with memory that has  as its input 
signal and  as its output. The system is assumed to 
be composed of two blocks (see Fig. 1). The first block is a 
linear time-variant FIR filter of order N: 
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The second block is a time-varying nonlinearity represented 
by a first-order polynomial: 
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defined as N=50 based on the results reported in [3] where 
it is shown that the initial 40 - 50 RR intervals previous to 
each QT are the most clinically relevant. 

The objective of our study is to identify the described 
system only from the knowledge of the input and output 
signals. In order to guarantee uniqueness in the determina-
tion of the filter weights and the polynomial coefficients, a 
normalization constraint on the weights is imposed: 

, n, with 1 denoting the N× 1 vector of ones. 
Also, constraints referred to weights being positive are 
introduced so as to be able to derive physiologically plausi-
ble interpretations. With all the above mentioned con-
straints, the output of the first block can be interpreted as a 
weighted-averaged RR measurement (which is optimally 
defined at each time n), while the output of the second block 
expresses the evolution of the QT interval as a function of 
such an averaged RR measurement. Finally, the output of 
the global system is considered to be contaminated with 
some additive white noise v(n) that can include delineation 
errors and/or inaccuracies due to modeling assumptions: 

1(n)T =⋅ 1h ∀
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Fig. 1 Block diagram of the dyna ic model pr . 

C. System identification 

State-space formulation
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where  is the known o ation vector and 
the parameter vector to ated, both of dimens
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be estim ion 

(n)θ

(N+1) × 1.  (7)In addition to the observation equation , a 
second equation describing the time-varying nature of the 
system state is incorporated: 

(n 1) (n) (n)θ θ w+ = +  .  (8) 

The two equations (7) and (8) constitute a state-space repre-
sentation of the syste o be entified. In such a represm t id en-
tation, the noises v(n) and w(n) are assumed to be uncorre-
lated zero-mean white processes with the variance of v(n) 
denoted by (n)σ2

v  and the covariance of w(n) denoted by 
Qw(n). The initial state of the system, (0)θ , is assumed to 
be uncorrelated with v(n) and w(n). The mean μ0,θ of (0)θ  
is defined using equation (5) and vectors μ0,h and μ0,a ini-
tially defined employing simple fitting procedures applied 
to the initial samples of the data series. The covariance 
matrix Π0,θ of (0)θ  is taken as the identity matrix. 
 

Kalman filter with regularization 
Estimation of t stem vector (n)θ  is performhe sy ed utiliz-

ng lman Filter is a linear 
ad  dea

plies that, at each time n, N+1 parameters need to be esti-

i  the Kalman filter (KF). The Ka
aptive MMSE filter that is able to l with nonstationary 

environments, which are the type of environments we en-
counter when analyzing the QT/RR relationship over ambu-
latory recordings. 

Direct application of KF to our formulated problem im-

+

v (n)

(nQTh(n) g ( . , a(n)) 
)y(n)xRR



mated from a unique observation, as it can be observed 
from equation (7). In order to make the solution more robust 
ag
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In equation (10), 0 denotes the N 1 vector of zeros and 
β(n) is a scalar called regular rameter, wh
selected using the so-called L-curve criterion [4]. Th
trix D(n) is defined so as to force the filter weights follow a 
rel T
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ainst noise or imprecision that can be present at the output 
(n)yQT , regularization is incorporated into the problem. 

This means that additional a priori information on the solu-
tion is added. This is performed in our study by augmenting 
the observation equation (7) as described next: 

T
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ation close to an exponential one. hat selection is based 
on our experience about QT dependence on RR [3] and, in 
any case, the strength put on that type of smoothing is de-
termined along with the state estimation. The noise '(n)v  is 
a fictitious zero-mean noise uncorrelated with (n)θ  and 
v(n) and with covariance matrix taken as the identity.  
 In the application of the KF, the variance (n)σ2

v the 
measurement noise v(n) and the covariance Qw(n  the 
process noise w(n) are estimated following the app ch 
proposed in [5]. 

Constraints 
With the objective of having an estimate of (n)θ  satisfy-

ing the constraints described in section II.B nstraint 
sp lt and the unconstrained solution  is 
pr

, the co
ace Ω is bui (n)θ̂
ojected onto it. Ω is defined by the condition that all of 

the elements of the estimated state vector, except the first 
one, have the same sign. This guarantees that the estimated 
weights are positive. Once the projection 
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is obtained, the constrained solution is renamed as

Estimates  and  are readily derived 

 
sons. Some of those indices are defined from the variable 

the time required by the QT interval to 
com

d st
 

L90(n) that measures 
plete 90% of its adaptation in response to RR changes. 

The variable L90(n) is calculated at each instant n using the 
weight profile (n)ĥ  estimated in II.C [5]. The proposed 
indices are L90,acc , L90,dec and L90,sta , which are defined as 
the mean of L90(n) in response to heart rate accelerations, 
decelerations an able rate periods, respectively. In each 
recording, those types of periods are identified following 
the approach proposed in [5]. 

Other indices are defined from the slope of the line that 
fits the QT RRy (n) , z (n)⎡ ⎤⎣ ⎦  data in small neighborhoods 

around each value of )(nz 0RR . The proposed markers are 
s

in periods 
. 

A. Dynamic Q

Evaluation of QT lag behind RR changes revealed sub-
stantial differences along the 24-hour recording. In mean 

equired by the QT interval to 
com  

in section II.D were sepa-
rately assessed in the placebo and amiodarone arms. In each  

acc, sdec and ssta, which are calculated as the mean of the 
estimated of accelerating, decelerating and 
stable rate, respectively

III. 

(n)â1  

RESULTS AND DISCUSSION 

T adaptation 

over recordings, the time r
plete 90% of the adaptation was L90,dec = 2.1 min when

measured after a heart rate deceleration, L90,ace = 1.6 min 
after a rate acceleration, and L90,sta = 1.9 min under stable 
rate conditions. 

 The slope s described in section II.D was as well evalu-
ated in episodes of decelerating, accelerating and stable 
heart rate. The mean slope values were sdec = 0.152, sacc = 
0.135 and s  = 0sta .127, respectively. 
  The results obtained in our study corroborate the 
hypothesis that QT dependence on RR is not constant along 
the recording time but such a dependence changes in re-
sponse to heart rate variations. Specifically, we found that 
QT adaptation after a sudden rate acceleration is more rapid 
than after a stable or a decelerating rate period. This can be 
explained by the fact that readjustment of cell mechanisms 
needs to be completed faster after a heart rate acceleration 
so as to avoid beat overlapping. 

B. Clinical risk stratification 

The risk markers described 

 (n)θ̂ . 

(n)ĥ (n)â from .  (n)θ̂

D. Clinical markers 

A number of indices are proposed for clinical compari-



Table 1 Mean and standard error of the mean for the markers described in II.D. Units are: min for L90,acc , L90,dec and L90,sta ; n.u. for sacc , sdec and ssta

 Placebo  Amiodarone  
 Survivors Victims  Survivors Victims  
 Mean ± SEM Mean ± SEM p-value Mean ± SEM Mean ± SEM p-value 

L90,acc 67,89 ± 2,77 110,55  ±  27,04 0,133 112,31 ± 6,43 75,68  ± 7,21 4 · 10-4

L90,dec 99,25 ± 4,18 153,50  ±  28,61 0,075 146,35 ± 7,98 111,93 ± 14,34 0,047 
L90,sta 88,76 ± 6,08 190,59  ±  73,91 0,186 134,36 ± 9,08 115,42 ± 32,35 0,581 

    
sacc 0,059 ± 0,003 0,091  ±  0,024 0,200 0,084 ± 0,005 0,045 ± 0,011 0,006 
sdec 0,085 ± 0,003 0,122  ±  0,025 0,159 0,113 ± 0,005 0,064 ± 0,011 0,001 
ssta 0,066 ± 0,004 0,114  ±  0,029 0,120 0,095 ± 0,006 0,063 ± 0,014 0,049 

    
of the two arms, independent analysis was performed for the 
group of patients who suffered arrhythmic death while on 
therapy and the group of those who survived. Results are 
presented in Table I. It can be observed that survivors 
treated with amiodarone have prolonged QT adaptation 
times as compared to those treated with placebo, either 
when the adaptation time is measured in accelerating 
(L90,acc), decelerating (L90,dec) or stable (L90,sta) rate periods. 
On the other hand, victims on amiodarone show reduced 
adaptation times with respect to values found in the placebo 
arm. Similar observations can be made using the variables 
that measure the slope of the RRQT/  relationship: in 
amiodarone, survivors exhibit increased slope values, while  
victims have reduced values. 

 These results confirm our previous observations that 
amiodarone modifies QT adaptation and such a modifica-
tion is different for victims and survivors of arrhythmic 
death [3]. The advantage of the dynamic method presented 
in this study is that local repolarization heterogeneities can 
be effectively detected even if they occur only at isolated 
episodes of the recording where heart rate experiments 
sudden changes. On the contrary, with the assumption that 
QT adaptation preserves constant characteristics in one and 
the same patient, local heterogeneities can be masked if, on 
average, the adaptation process is not severely altered. Ar-
rhythmic death has been usually associated with rate exer-
tion [6]. Our results suggest that amiodarone improves repo-
larization adaptation by delaying the response of the QT 
interval to rate accelerations. Those patients in which amio-
darone is not able to provoke such a delay are at higher risk 
of suffering from arrhythmic death. In a similar manner, 
when a heart rate deceleration occurs, amiodarone increases 
the QT adaptation time so as to prevent excessive increased 
QT lengthening in the early phase of rate decelerations, 
which could trigger ventricular arrhythmias [7]. Patients in 
which amiodarone is not being effective show shorter adap-
tation times, indicating higher vulnerability to arrhythmic 
death. 
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