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Abstract—In this paper, an analysis of HRV during decreases daytime sleepiness, irritability, tiredness, low concentration
in the amplitude fluctuations of PPG (DAP) events for OSAS and impaired learning [2]. Those factors generally have more
screening is presented. 268 selected signal segments around thgeriouS consequences such as social problems and job and

DAP event were extracted and classified in 5 groups depending - ) - -
on Sa0; and respiratory behavior. Four windows around each traffic accidents. In addition, OSAS produces hyperactivity and

DAP are defined and temporal evolution of time-frequency HRvV reduced capability to perform mental tasks during childhood
parameters were analyzed for OSAS screening. Results show a[3]. Severe OSAS generates diurnal hypertension and many

significant increase in sympathetic activity during DAP events other potentially fatal cardiovascular effects [4], [5].
which is higher in cases associated with apnea. OSAS consists in an interruption of the airflow to the lungs

DAP events were classified as apneic or non apneic using a roduced by an upper airwavs occlusion. This is accompanied
linear discriminant analysis from the HRV indexes. The ratio of P y pp y ’ P

DAP events per hourrose and the ratio of apneic DAP events per bY a decrease of blood oxygen over time and mechanical
hour r3, were computed. Results show an accuracy of 79% for respiratory efforts that are intensified in order to reopen upper

roar (12% increase with respect toror) a sensitivity of 87.5% and  airways. If these efforts are not sufficient and the hypercapnia
a specificity of 71.4% when classifying 1-hour polysomnographic |eye| is dangerous, an arousal is generated to reactivate all the

excerpts. As for clinical subject classification, an accuracy of 80% inheral t d iration i tored. Thi isod
(improvement of 6.7%), a sensitivity of 87.5% and a specificity of peripheral systems and respiration IS restored. IS episode

71.4% are reached. These results suggest that the combination of May recur hundreds of times in a single night, with serious
DAP and HRV could be an improved alternative for sleep apnea health implications [6].
s_cree_ni_ng from PPG with the added benefit of its low cost and Polysomnography (PSG) is the gold standard procedure for
simplicity. sleep apnea diagnosis. PSG consists in an overnight recording
Index Terms—Sleep apnea, children, heart rate variability, of different electrophysiological signals. The most common
pulse photopletysmography, time-frequency, decreases in the signals recorded are electroencephalogram, electromyogram,
amplitude fluctuations of PPG. electrooculogram, electrocardiogram, airflow and oxygen sat-
uration. The acquisition and analysis of those signals requires
. INTRODUCTION human experience and specialized equipment. The latter re-
. uirements and the reduced number of sleep centers makes
Sﬁﬁg%%g?ﬁrﬁﬁgg Qgg;?);%g?;ggse vf/%?ﬁz)h'zrgc leep diggnosis a very expensive.progedure. !n addition, slgep
. ) .%lagnoss produces a psychological impact in case of child
lence among the general population, whit levels reaCh'gJ%tients [71-[9]
values as high as 4% for men, 2% for women and 3% for )
children [1]. Generally, sleep apnea goes undiagnosed, s;irp1
painful symptoms do not appear and patients do not s
medical aid. The most common sleep apnea indicators e

In the last decade, application of different techniques for
e sleep apnea monitoring has been extensively developed
]. These techniques range from the most sophisticated
hnology, such as video recording, to simple measures such
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(HRV). HRV represents fluctuations in the heart rate relat&lGP800), according to the standard procedure defined by
to ANS control. HRV exhibits frequency components fronthe American Thoracic Society [22]. PPG and arterial oxy-
0 to 0.5 Hz, which could be associated to the autonomien saturation (Saf) were measured continuously using a
nervous system branches. The frequency components betwgglise oximeter (COSMO ETCO2/SpO2 Monitor Novametrix,
0.15 and 0.5 Hz represent the vagal tone, frequencies Ntedical Systems). Signals were stored with a sample rate of
this band are known as high frequency components (HAQO Hz, only ECG signals were sampled at 500 Hz. OSAS
Frequencies from 0.04 to 0.15 Hz manifest the activation efialuation from PSG data were scored by clinical experts using
both parasympathetic and sympathetic nervous system dne standard procedures and criteria [1]. Ten children were
these are labeled low frequency components (LF). Finalldiagnosed with OSAS and eleven were diagnosed as normal.
frequencies between 0.0033 and 0.04 give information of the

slow processes such as thermoregulation. Since the relay/epecreases in the amplitude fluctuation of PPG (DAP)
participation of parasympathetic and sympathetic nervous datection

the low frequency component is uncertain, the ratio between

HF and LF is defined as the sympatho-vagal balance [13]'tone generating arterial vasoconstriction. Transient sympa-

[lg]itz\fg%ne:; :J((:)(Iegreadp%%aeggonmdeigﬁn[%:(]e ﬁg?a;'?ev [glei]{—getic activations are reflected as DAP [19], [23]. In order
. ) : '  identify DAP ts, lied a detecti Igorith
ments in the amplitude fluctuations of PPG (DAP) even identify events, we appled a detection algoritim

Based on detecting the envelope reduction of the PPG [14]. A

ar?_ Tarkers of sympdathetic dischat[g_ei_ becar:J_sE .Symﬁatrt'gg%mary of the algorithm steps is presented next. PPG signal
activity increases produce vasoconstriction which is reflec ¢ (n)) is detrended,, _(n)) by removing the mean value

Itn tthe Pig sggal Vt\% decreases in the signal at::]ptl_ltudet_fl. otained with a moving average filter. Artifacts were detected
uation [19], [20]. €n apnea occurs, sympathetic activi :chC(n) by an algorithm based on Hjorth parameters and

mcre?ses [11], [1dZ],.therT!f0re aAP events;hcoulcﬁ] |n.d||rec't e artifacted signal segments were rejected. The envelope
quantify apneas during sleep. However, other physio Og'cgaggn) of z, _(n) is obtained at the artifact free signal

During sleep, apnea or arousal events increase sympathetic

events such as movements and deep inspiratory gasp pro ents by:
sympathetic activation and consequently decrements in P
envelope amplitude [21], which are unrelated to apnea. As 1
respiration modulates HR, a HRV analysis could be useful r,(n)= |— Z x2 (k) (@h)
in distinguish whether DAP events are related to apnea or to Np feno(Ny—1)

other different events. So, the apnea identification by applying
detection of decrements in the amplitude fluctuations of PP

(DAP) as reference point and further spectral paramete SDAP event is identified at time, when z,(n) is lower

analysis of the HRV around this point could offer an integrati i . N
procedure which represents an alternative solution to defiﬁ;}?‘r.1 a pre-defmed ad"?‘p“"e threshold and th|s situation has a
: ) - - minimum duration. This adaptive threshold is updated when
apnea episodes and obtain more specific apnea screening. . . .
i : . nF|ther DAP event nor artifacts are present and is calculated as
The aim of this study is to analyze the sympatho-vaga .
) ; a percentage of the mean of the lagtnon artifacted samples
balance during DAPs related and not related to airflow reduc;
. : ) : of tlhe envelopex , (n).
tions, oxygen desaturations and no apnea episodes in normal
and pathologic children. The dynamics of the sympatho-vagal . o ]
balance is obtained by the analysis of spectral parametérs PAP clustering criteria related to apnea signs
of the HRV applying a Time-Frequency representation called Medical diagnosis consisted in classifying the available
Smooth Pseudo Wigner-Ville Distribution. Furthermore, contecords in the database in two groups: normal or pathologic.
parison between apnea screening using only PPG and B%&P events for each recording were detected with the proce-
combination of PPG and HRV is carried out. Section ltlure described in section II-B and [14] at the PPG signal.
introduces materials and methods. Section Ill presents tBegments from ECG, PPG, SaCair flow and abdominal

results which are discussed in section V. Finally section ¥ffort centered at the DAP event onset and lasting 5 minutes

n

Where N, is the number of samples in two cardiac cycles.
is was selected according to the results in Gil et. al. [14].

shows the conclusions. were extracted, and from here denoted as DAP events. From
these events, those who had clear signatures were taken to
Il. M ATERIALS AND METHODS obtain five different groups with uniform patterns based on

the gold standard criterion for defining sleep apneas [1]. DAP

A. Data event is classified into: Group 1 (BEwhen SaQ decreases by

One complete night polysomnography recordings from 2it least 3% and there is not a clear reduction in airflow signal.
children were used in this study. Age of the children rang&roup 2 (@) when airflow decreases by at least 50% with
around4.47+2.04 years. Children were referred to the Miguelespect to the baseline for a minimum duration of 5 seconds.
Servet Children’s Hospital in Zaragoza for suspected slegproup 3 (G) when airflow reduces by more than 50% from
disordered breathing. EEG with electrode positions C3, Cdase line and is accompanied by a reduction in Safat
01 and 02, chin electromyogram, ECG with leads | anéast 3%. Group 4 (§ when DAP event correlated neither to
II, eye movements, airflow and chest and abdominal respirflow reduction nor Sa9decrement. Finally, Group 5 (&
ratory efforts were recorded by a digital polygraph (BITMEDvhen DAP events are related neither to apneas nor to, SaO
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Fig. 1. DAP events examples. The DAP event onset and end (as given by the detector) are marked with dashed lines.
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TABLE |

NUMBER OF DAP EVENTS IN EACH GROUP spurious components are known as cross-terms, and disturb
the energy signal interpretation in the time-frequency plane.
Clinical DAP group In this study, the kernel used for minimizing the cross-term
Diagnosis| G | Gz | Gs | G4 | Gs | Total errors effect was the Smooth Pseudo Wigner-Ville Distribution
Normal | 4 [ 32 | 5 | 76 | 31 | 148 (SPWVD). This distribution was introduced by Martin W. and
OSAS | 44 121138111 41} 120 Flandrin P. in 1985 [27] and is characterized by independent
Total 78 (53 T 38 87 22 I 268 a . [27] and is characterized by independen

smoothing functions in time and in frequency, originated by

. I . t) andn(Z)n*(—%) wind ively.
decrements but a change in respiration occurs. Figure 1 shéOV\gs) andn(3)n*(=3) windows respectively

typical examples of airflow, abdominal efforts, Sa®@PG and . Ty« T
ECG for the different groups. GG, and G can be merged in o(t,7) = <p(t)77(2)77 ( 2) )
a single group named ~Japneic group) as well as,Gind G The SPWVD parameters were selected in order to allow us

can also be regrouped in a single sef, @on apneic group). to evaluate the spectral components of the heart rate variability

A total of 268 DAP events were extracted. Table | showswith high time and frequency resolution [28], and on the

summary of the DAP events in each group. basis of recommendations and experimental results reported
Notice that G group has a comparable number of evenia previous studies [29], [30]. For smoothing in timg(t), a

belonging to subjects clinically classified as normal or OSA$iamming window of 10.5 seconds was selected, whereas for

while more could have been expected for OSAS. The reasemoothing in frequencyy(Z), a Hamming window of 64.5

could be that oxygen desaturation is a leading parameter §@fconds was used.

clinical diagnosis, so these,Gevents, which do not have a

strong impact on Saf) do not necessarily lead to OSAS labef statistical Analysis and Classification

explaining this apparent inconsistency. 1) Statistical Analysis:In order to quantify the evolution

of autonomic variations when a DAP event is associated or
D. HRV analysis not associated to airflow decrements, $a@ductions or to
Inverse interval functior,. (¢,) [24] denoting the heart rate nothing, four time windows were defined in specific time
time series were extracted from the ECG segments by iatervals related to DAP events onset. Figure 2 shows the mean
automatic QRS detector [25] providing thebeat location for of the d,- sequences when DAP is related or not related to an
everyjth beat.d,(t;) series were re-sampled at 2 Hz by cubiapneic episode, as well as the windows defined in relation
spline interpolation. Resulting time series, were detrended toy DAP event. Time 0 s is assigned to DAP onset. The
subtracting the mean value. Subsequently, analytic signtilee windows are defined as follows: a) Reference window
from each segment were obtained by applying the Hilbenw,) is located 15 seconds previous to the DAP event onset
transform to the detrended series. After that, Time-Frequenejth a duration of 5 s. b) DAP episode windowu() is
representation was used to decompose the signals in tlieisnd two seconds before the DAP onset and lasting 5 s.
different frequencies at each time. Then, the time evolution of Post DAP event windowu,) located 15 seconds after
the heart rate variability indexes was evaluated: total pow&AP onset and lasting 5 s. d) Global window) starting
from 0.0033 to 0.5 Hz ®;); very low frequency power, at 20 seconds previous to the DAP onset, lasting 40 s and
from 0.0033 to 0.04 Hz7R,.:); low frequency power, from containing the others windows. Mean absolute values in the
0.04 to 0.15 Hz P.); high frequency power, from 0.15 totime windows were computed fof,. sequencesP,., P,
0.5 Hz (P.); and low to high frequency ratioR.:). The Py and R as well as for the normalized versions with
representations and the spectral indexes were obtained usiggpect to the total poweP,.,, Ps, and P, . Kruskal-
the absolute values of the time-frequency distributions. ~ Wallis non parametric statistic approach was performed in two
Time-Frequency analysis presents interesting mathemat&ses: one, to compare the time variations among windows of
features to analyze short time series with high time-frequenelRV parameters, and the other, to compare differences among
resolution. In our study, a good time resolution is requiregroups for each parameter and window. Post-hoc analysis was
because apneas in children present rapid changes. Therefapplied to determine which pairs had statistic differences (p
Cohen’s class time-frequency distributions were considered.0.05).
This class obeys the property of time and frequency shift2) Features SetsFrom the grouped groups were extracted
invariant [26]. Cohen’s class is defined by the next equatioa: series of features in order to select a set of them that
could provide separation between normal (apneic unrelated)
and apneic (apneic related) DAP events. The set of features is
formed by the mean and the variance within the four different
(2) windows (,, w4, w, andw,) referred to the DAP detection of
Where ¢(t — t',7) is a function labeled kernel and(t) d, P.r,, Pur,.» Riewe indexes. In addition, for each index the
is the analytic signal to be analyzed. The kernel propertideference between reference,., and DAP episode window,
define the distribution properties. A specific kernel univocally,, as well as betweemw, and post DAP event windowy,,
defines a distribution. The kernel is a bi-dimensions filter, theas computed. In order to reduce the biovariability dp
purpose of which is to eliminate noisy energy componentsmporal indexes, signal were first normalized by subtracting
generated by the quadratic nature of the distribution. Thodee mean value and dividing by the variance during the

T

Colt, f) = //qS(t—t’,T)x(t’— %)z(t’—l— e rITdt'dr
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TABLE I
2 Ga PSGFRAGMENTS CLASSIFICATION
N R S b I It o Clinical PSG fra ificati
gmentslassification
= 1.5 M\_,./?\\_,_MM diagnosis| #subjecty #ragments #nhormal] #doubt| #pathologic
L PR N N N ¥ 1o~ Normal 10 46 42 4 0
= wy wd ~ TJwy Pathologic| 11 59 28 20 11
1 : Total 21 105 70 24 11
-40 -20 0 20 40
2 G
= . .l _MN . 4) Selection and Transformation of the Featurd=eature
=S RN i selection can be addressed in different ways, it being pos-
1.5 1 N ; . . i
L IR 1 N ] sible to evaluate it by statistical analysis of features, wrap
= wy - > Twyp methods, Principal Component Analysis or Factor Analysis.
1 ' Wrap methods consist in selecting the features based on the
-40 -20 0 20 40 (lassifier perf by gradually addi f
time (s) classifier performance by gradually adding one more feature
and selecting the combination which provides the highest

Fig. 2. dy meand S.D. for apneic (G= Gy+Gy+Gs) and non-apneic classification accuracy. The wrap method was used in this

(Gn= G4+Gs) DAP events. Analysis windows (r reference, d DAP episodeVOrK.
p post DAP event). Dashed line at reference time indicate DAP onset.

F. Clinical Study

complete (5 minutes) DAP event. Spectral indexes normalized.l_o evaluate the improvement of adding HRV information for
with respect to the total power were used. Features are deng IAS diagnosis based on PPG, a clinical study was carried

as either X,,, oxy or AX, . where th_e overline ?”d out. The available one night PSG recordings described in
g denotg the mean and variance respectlvédy,the MaIN -~ saction 11-A were split into 1-hour length fragments. These
index, W'thX < {die, Pies P, RLF’”F.}’ the SUbSC.”pm. the one hour PSG fragments were labeled as control, doubt or
normalized version and the supersctipthe analysis window pathologic based on SaQiesaturation in order to later be
able to evaluate the classifier accuracy for these fragments.

(w, for referenceqw, for DAP episodew, for post DAP event
To establish this separation, a baseline le¥alorresponding

and g for global), A indicate a differential index and in this
casew; andw, denote the two windows involved. A total ofto the SaQ signal mode of the entire night recording, was
considered [14]. In all recording® > 97%. Total time

34 features were extracted.
3) Classifier: A linear discriminant analysis was used tq

Intervals with ignal belows — _3, Wi lcul
separate between DAP events related and not related to a (E:% als with Sa@ signal belows —3%, ¢, as calcu ated .
! or each fragment. PSG fragments were classified according
episodes (G and G,). Let yi = [y1i, Y2i, ---, Yai] DE @ row

: to the following criteria:
vector with d values where each column represents a feature 9

value fromith DAP. And suppose we wish to assign to tp—3 < 0.9 minutes control
classk of the ¢ possible classes, then the discriminant value 0.9 minutes< ¢5_3 <3 minutes  doubt  (8)
fr for each class is evaluated from the following equation: tg—3 > 3 minutes pathologic

1 This implies a minimum of6% of the time with evident
fe=mSy! - 51%271#{ + log(m) (4) oxygen desaturation to be considered as pathologic, which
corresponds to a severe OSAS criteria in children [31] of 18
apneas/hour having a mean duration of 10 seconds. For control
group the threshold corresponds to 5 apneas/hour. Table I
shows the classification for these PSG fragments.
Now the objective is to classify these one hour fragments
L based on the DAP per hour ratio. This classification will be
Pk = 7 Zyik (5) done both just with the DAP coming from the DAP detector
L in section 1I-B,r,,, and with those classified as apneic DAP
For an LD classifie® represents the pooled covariance aneivents with the methodology presented in II-E,,.. For
its is evaluated as: training the classifier, DAP events in II-C selected from groups
G; to G5, were used. ROC curves were calculated for both
1 T indexes and the optimum thresholds in terms of maximizing
N —¢ Z Z(y““ — )" (Xik = pay) ©) sensitivity (Se) and specificity §p), were established. In addi-
_k:1 =1 . tion, Wilcoxon non parametric statistical analysis was carried
7, represent the prior probability thgg belongs to a class. .t for hoth indexes in order to evaluate their discriminant
A practical way to evaluatey, is : power between groups.
— Ni @ Since we are interested in having a label attached to a
N patient, we need a rule to determine when a patient with
Finally y, is assigned to the clask,with higher f;. a given number of pathological fragments is considered as

where T represents the transpose andis the row mean
vector obtained from the whol®&, training vectors belonging
to classk. In order to evaluatgs, let IV, be the total number
of y; in the training set, the,, is obtained by:

Y =
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TABLE Ill
KRUSKAL-WALLIS ANALYSIS RESULTS OF STATISTICAL COMPARISON AMONG GROUPS FOR EACH FEATURIFIRST ROW IS THEp VALUE TEST. THE
REMAINING ROWS SHOW A NUMBER(OR NUMBERS) INDICATING WHICH GROUP (OR GROUP§ HAS STATISTICAL DIFFERENCES WITH THE GROUP
ASSOCIATED TO THE ROW(FIRST ROW ELEMENT).

O'dm:rn O'dm:d Udﬁ“;" O-dﬁf:-q anxr an:d anxp dIIF:g AduFZT wd AanZT wr
p | 0,015 <0,00n0] 0.08% 0,0062 0,194 <0,0001 | 0,309 | 0,48 <0,0001 0,435
Gl - - - - - 7 - - z -
Gs| - 45 - - - 4 - - 4 -
Gs| - 45 - 5 - 4 - - 4 -
Gy - 23 - 5 - 1235 - - 123 -
Gs| - 23 - 34 - 4 - - - -

Pu. | Put | P | Pt |APG AP Pl | Pad | Pul Prd AP APy T
p | 0,0039| 0,017 | 0,0047| 0,0006 0,297 0,484 |<0,0001<0,0001 <0,0001 <0,0001 0,032 0,218
Gi| - - - - - - Z Z Z Z - -
Gs| - - - 4 - - 4 4 45 4 - -
Gs 4 4 4 4 - - 4 4 45 45 - -
Gy 3 3 3 23 - - 1235[1235 123 123 - -
Gs| - - - - - - 4 4 23 3 - -

Rt | Rt | R | Rtk | AR g [ AR g 7| Pz, | Poi | Pur | Pur_ |Apuy, "aper. ™
p [<0,0001<0,0001<0,0001<0,0001 <0,0001 0,341 0,0007|<0,0001 <0,0001 <0,0001 0,38 0,668
Gi| 4 Z - z Z - 4 Z Z Z - -
Gy 4 4 4 4 4 ; 4 4 4 4 ; ;
Gs| 4 4 45 | 45 A ; 4 4 4 4 ; ;
Gy4|1235(1235| 235 123 12 - 1231|1235 123 123 - -
Gs| 4 4 34 3 ; ; - 4 } } ; ;

TABLE IV

a pathologic subject. For that, the percentage of time under PSGFRAGMENTS CLASSIFICATION RESULTS

pathologic fragments based on, and rg,, was analysed.

The threshold for this percentage was selected for maximizin PSG Fragmentslassification Subjecislassification
Se and Sp. From the total of 21 children, six subject were | Index | S (%)[S, (%) Accuracy(%)| S (%) [ S, (%) | Accuracy(%)
excluded because only less than 4 hours had ECG and PRQosr | 81.8 | 64.3 66.7 5 | 714 733
signals of acceptable quality, so 15 registers were included i yTone | 72.7] 80 L gr5| 14 80
this study corresponding to 8 OSAS and 7 normal according

to clinical diagnosis.

B. Clinical Study Results

1. RESULTS Results regarding PSG fragments and subject classification
o . are shown in Table IV. The inclusion of HRV information
A. Statistical Analysis Results improves the PSG fragments classification accuracd2if%,

Table Il shows Kruskal-Wallis analysis results of statisticd®2ching a 79%, and obtaining values .7% and 80%
comparison among groups for each feature. First row @thé‘or sensitivity and specificity, respectively. In addition, the
value test. The remaining rows show a number (or numbe jlcoxon statistic analysis shows a higher discriminant power

indicating which group (or groups) has statistical differencé€tween pathologic and normal fef,. (p = 0.0061) than for
with the group defining the row. roae (p = 0.0225). ROC curves in Fig. 4, varying thresholds

Figure 3 shows mean and standard er6rd,.., o in o @andrd,,, demonstrate the advantage of including HRV
and spectral indexes obtained by smooth psenL;do ”\F/(;igng],f_ormation. As for subject classification, the improvement in
Ville distribution. Letters refers to the temporal windowgccuracy i6.77%, reachmg_a_l 80%, and _o_b'_talnlng val_ues of
analyzed during DAP (r reference, d DAP episode, p post DA§5'5% and 71.4% for sensitivity and specificity respectively.
event). From the top to the bottom, mean heart (d@g,),
standard deviation heart rate . ), low frequency P.,), IV. DiscussiON

high frequency B., ) and low to high frequency ratidi.)  Analysis of autonomic control during decreases in the am-
of heart rate. All the spectral parameters were normalized wigfitude fluctuation of photopletysmography signal in children

respect to the total power at each time. * referpter 0.05 was presented. Table Il shows statistical differences among
between windowsw, and wg and § to p < 0.05 between G,, G, and G (G,) with respect to G and G; (G,,) for

windows wg andw,. most of the features, confirming the association made in
The best features to classify betweep &d G, obtained section II-C based on the apnea physiology. As for time
by the wrap methoavereP,! , Ry, O yua @ndAdye,” °,  features,Ad,e,,” " evidence a higher rise it for DAP

having an accuracy of 68.77%, $ = 70.5% and aSp = associated with apneic events,(Ghan for DAP without apnea
68.46%. connection (G). Respiration modulates HR, HF being the
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Fig.3. dyrn+ SE; 0 ¢, = SE and spectral indexes obtained by smooth pseudo Wigner-Ville distribution. Window refers to the temporal windows analyze:

during DAP (r reference, d DAP episode, p post DAP event). From the top to the bottom, mean heakifgtestandard deviation heart ratg,g”F ), low
frequency P.e,, ), high frequency Pye,,) and low to high frequency ratioRene) Of heart rate. All the spectral parameters were normalized with respect to
the total power at each time. * refers go< 0.05 between windowsv, andwy and§ to p < 0.05 between windowsv, and wy.

component which mainly reflects the respiratory process. Our

T . hypothesis is that this modulation is different among groups
and at the different temporal windows, these differences being
0.8t - - the parameters used to distinguish among groups. Results
show that differences (higheP., and lower P, values)
appear in frequency features for all groups with respect to
) 06/ G4 during all time referencesu(., wq, w, andw,) indicating
0 a predominance of the sympathetic system during apnea, in
04+ agreement with [11], and the fact that different respiratory
patterns appear. A$,. presents higher values in,Gand
important significant statistical differences with Ghefeature
0.2} f;”;i was the first selected by the wrap method for feature
selection, section II-E4.
Oo 0.2 0.4 0.6 0.8 1 Figure 3 shows increments in thig signal during the DAP

1-Sp event window for all groups, except,GTime evolution of
frequency features shows similar patterns in all groups, an

Fig. 4. ROC curves forpse (dashed line) anag,, (solid line). Bullet dots increase inP., and R and a decrease i, during
indicate the points where the global results are presented. DAP, indicating an activation of the sympathetic branch of
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the ANS followed by a recovery period. However, incrementomponents of the time series. However, under conditions of
in the d,. signal during the DAP event window turn out torapid change such as sit to stand and sleep apnea, autonomic
be statistically significant with respect to reference and paztntrol adapts speedily to satisfy the system requirements, so
DAP event window only for groups 1, 2 and 3. This meanthe RR sequence shows non-stationary behavior. Under such
that changes are better marked for apneic events as indicatedditions, more sophisticated techniques of signal processing
AEHF:”W in Table IIl. P, reveals significants incrementsare required to analyze the time evolution of the autonomic
only during the DAP event window in Gand G with respect control mechanism. Different approaches have been devel-
to reference window and G G, and G with respect to the oped to deal with this problem. Time-Frequency [26], Time-
post DAP event window. DAP event window shows reductiodarying [38] and Time-Scale [39] analysis are some of the
in the P, for all groups, however significances are found imost powerful tools. In our study, a good time resolution is
Gi1, G, and G;. R also presents significant differences inequired because apneas in children present rapid changes.
those groups, but with an increment in the DAP event windowherefore, Cohen’s class time-frequency distributions were

Our main findings were: an increase in sympathetic activionsidered. For minimizing the cross-term errors effect of
occurs during DAP events, in concordance with [19]. Whethese quadratic distributions the Smooth Pseudo Wigner-Ville
DAP events are not associated to either respiratory eventsDostribution was used. The smoothing functions defining the
SaQ decrements, heart rate variability shows just a slighernel were selected in order to allow us to evaluate the
alteration and its spectral power is more shifted to the higipectral component of heart rate variability with high time
frequency component. On the contrary, DAP events assoaird frequency resolution [28].
ated to apnea produce a stronger variation in heart rate andhis methodology could be evolved if the spectral parame-
spectral power is concentrated in the low frequency randers of the heart rate could be extracted from the PPG. In this
These results suggest that sympathetic activation is deepey, only acquisition of one signal could be enough to analyze
in case of association with apnea. The statistical differenceleep apnea episodes. Since PPG signal is a very simple, cheap,
between DAP events associated with apnea and those withand easy to acquire measure, PPG presents great potential
association indicate that HRV analysis is useful to discriminater home apnea monitoring, reducing the cost of wearable
between these two groups of events. This has led to bettievices and complex technology for analysis. Processing of
specificity in apnea detection, as corroborated by the cliniddPG signals could be implemented in real time and with a
study in section IlI-B. very low computation cost.

Photopletysmography signal carries information related to Our results fall within the reported interrater reliabilities for
the cardiovascular function as well as blood gases concentieep scoring [40], where the mean epoch by epoch agreement
tion. This signal presents interesting characteristics that canliEween five scorers was 73%, and within the inter-observer
used to detect apneic episodes. However, its high sensitivitgreement on apnea-hypopnea index (AHI) using portable
could produce misdetections and overestimate apneic episoaeanitoring of respiratory parameters [41], where the AHI
Generally, in most of the studies PPG has been directly relasgreement scored by 8 physicians was 73% measured by
with the cardiac function, giving as a result a measure of thtraclass correlation coefficient.

Pulse Transit Time (PTT) [32]-[34]. PTT gives a quantitative Many studies have been carried out for OSAS screening
measure of the time that a pulse wave needs for passing frattempting to reduce PSG cost and complexity. Different
one arterial to another, and is evaluated as the time interte¢thniques have been proposed, oximetry-based screening
between the ECG R peak and the start of the correspondivgjng one of the most widely suggested for both the adult
PPG wave. PTT decreases after an apneic event due tand pediatric population. Although these methods have high
sympathetic activation related to arousal which produces hesensitivity, they tend to have very low specificity [42]. In
rate increment, higher stroke volume and vasoconstricticagdition, a confounding factor in children is that obstructive
which in turn generate pulse wave acceleration [35]. Howevewnents frequently do not lead to significant oxyhemoglobin
some other physiological events such as slow paced breathilegaturation. Pulse oximetry in children has the same limita-
[36] and deep inspiratory gasp [37] also induce variation in th®n as in adults [43]. Brouillette et al [44], in an extensive
PTT that could be mistaken for sympathetic activations. Howtudy involving 349 children, obtained a positive predictive
ever, this integration loses important information that coulhlue of 97%, but the negative predictive value was only
be obtained from the heart rate spectral parameters. Heart &386. Other approaches based on ECG [15] have shown very
dynamics and spectral parameters offer time and frequerggyod results for adults, achieving perfect scores of 100%
information that discriminates between small cardiovasculer accuracy for subjects classification. However, few ECG-
variation and more severe ones, as when an apneic episbdsed studies are aimed at children, for which physiology is
occurs. different and important differences in sleep disorders exist

Heart rate control oscillates in a specific range of frg22], [31]. Shouldice et al [45] reported a sensitivity of
guencies. These frequencies characterize autonomic nerv8bg¥% and a specificity of 81.8% in an ECG-based study
system control, that is activated or inhibited as a result oh children by adapting previous research on adults where
feedback mechanisms. Under constant conditions such as riedtrmation of ECG-derived respiratory signal was included.
autonomic control is very regular and RR sequence show@srdiorespiratory sleep studies that typically include 2 or more
a stationary pattern. This situation allows the application sfgnals have also been considered. These studies have been
techniques such as Fourier transform to obtain the spectshbwn to be sensitive to OSAS, but mostly in adults [46].
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Some other alternatives, such as nap studies, clinical histgrg] w. w. Flemons, M. R. Littner, J. A. Rowley, P. Gay, W. M. Anderson,
sonography or videography exist [43].

In summary, in terms of sensitivity and specificity, the re-
sults of our proposed method are similar to [45] or better thatu] V. K. Somers, M. E. Dyken, M. P. Clary, and F. M. Abboud, “Sympa-

(31,

[43], [44] currently investigated alternatives for OSAS

screening in children. However, performance improvement
reach the accuracy of adult methods would be desirable, an
extended studies are needed to corroborate the potential of our peripheral vasoconstrictionAm. J. Respir. Crit. Care. Medvol. 165,

method in diagnosing sleep disorders in children.

(13]

V. CONCLUSION [14]

In conclusion, our results suggest that an increase in
sympathetic activity occurs during DAP events. When DAP
events are not associated to either respiratory events of S&B]
decrements, heart rate variability shows slight alterations, and
its spectral power is more shifted to the high frequency
component. On the contrary, DAP events associated to apifi&a K. Dingli, T. Assimakopoulos, P. Wraith, I. Fietze, C. Witt, and N. Dou-
produce strong variation in heart rate and spectral power is

concentrated in the low frequency range. These results suggest

D. W. Hudgel, R. D. McEvoy, and D. |. Loube, “Home diagnosis of
sleep apnea: A systematic review of the literatufetjest vol. 124, pp.
1543-1579, 2003.

thetic neural mechanisms in obstructive sleep apn&aClin. Invest,

vol. 96, pp. 1897-1904, 1995.

V. A. Imadojemu, K. Gleeson, K. S. Gray, L. |. Sinoway, and
U. a. Leuenberger, “Obstructive apnea during sleep is associated with

pp. 61-66, 2002.

A. Malliani, “The pattern of sympathovagal balance explored in the
frequency domain,News Physiol. Scgivol. 14, pp. 111-117, 1999.

E. Gil, J. M. Vergara, and P. Laguna, “Detection of decreases in
the amplitude fluctuation of pulse photoplethysmography signal as
indication of obstructive sleep apnea syndrome in childr@&igmed.
Signal Process. ContrpR008, doi:10.1016/j.bspc.2007.12.002.

T. Penzel, J. McNames, P. de Chazal, B. Raymond, A. Murray, and
G. Moody, “Systematic comparison of different algorithms for apnoea
detection based on electrocardiogram recordinlyigtical Biological
Engineering Computingvol. 40, 2002.

glas, “Spectral oscillations of rr intervals in sleep apnoea/hypopnoea
syndrome patients Eur. Respir. J.vol. 22, pp. 943-950, 2003.
F. Roche, J. M. Gaspoz, |. C. Fortune, P. Minini, V. Pichot, D. Duverney,

that sympathetic activation is deeper in case of association with F. Costes, J. R. Lacour, and J. C. Barthimy, “Screening of obstructive
apnea.

The ratiorg,, present an increase of 12% in accuracy fqgg
classifying 1-hour polysomnographic segments with respect
to 7o, reaching 79% and obtaining values of 72.7% and
80% for sensitivity and specificity, respectively. As for subjetﬁg]
classification, the improvement in accuracy6i§%, reaching
80%, obtaining values &7.5% and71.4% for sensitivity and

specificity respectively. Consequently, HRV analysis improv

the utility of PPG signal in sleep disorder diagnosis, so that
the combination of DAP and HRV could be an alternative
for sleep apnea screening with the added benefit of low cé&H

and simplicity. Nevertheless, extended studies are needed to

corroborate the potential of PPG signal in conjunction witf22]
HRV analysis in diagnosing sleep disorders.
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