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Abstract

Changes in body position are sometimes mistaken for
myocardial ischemia during ECG monitoring in the coro-
nary care unit. Two different methods for detecting body
position changes based on spatial and scalar approaches
are investigated. These methods have been tested in two
databases containing controlled body postion changes,
and ischemic episodes, respectively. The results show that
reliable detection is possible in more than 90 % of the
cases.

1. Introduction

Body position changes (BPCs) are sometimes misclas-
sified as ischemic events when monitoring the ECG in the
intensive care unit. This observation has been pointed out
in a number of recent papers [1], [2]. Previous work are
descriptive in nature and present results on how various
ECG measurements are affected by changes in body posi-
tions; no methodological development concerning the BPC
detection problem is presented. The purpose of this pa-
per is to investigate algorithms that reduce ischemic false
alarms due to BPCs during ambulatory ischemia monitor-
ing. Two methods which deal with the issue of detecting
BPCs are presented: one technique utilizes a spatial ap-
proach by estimating rotation angles of the electrical axis,
while the other uses scalar-lead signal representation based
on the Karhunen—Loéve transform (KLT).

2. Methods

2.1.

The spatial approach assumes that a BPC changes the
direction of the electrical axis of the heart. The axis change
can be estimated by relating a vectorcardiographic (VCG)
loop of the QRS complex (matrix Z) to a reference loop,
Z r. The relation is based on certain geometrical transfor-
mations i.e., scaling (scalar ) and rotation (matrix Q) as
well as assuming the presence of additive white Gaussian
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noise, V. A refined time synchronization is introduced by
the shift matrix J,. The model relation between Z and Z g
is expressed as [3],

Z=0aQZpl, +V )

In ischemia monitoring, it is preferable to select the
early part of the QRS complex for loop alignment because
the later parts are affected by ischemia. In order to han-
dle large differences in amplitude of the early part, a nor-

malized distance criterion for loop alignment was intro-
duced [4],
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From (2) it is possible to derive least squares estimates of
the alignment parameters & and Q The three element (one
for each dimension) rotation angle estimate, ¢3 is in turn
defined by Q. In order to denote the estimates from dif-
ferent VCG loops, corresponding to different beats, a time
notation identifying angle estimate at ¢; is included with
the angle estimates, G(t;).

In order to improve detector performance, poor angle
estimates were rejected based on two different criteria. The
first criterion is related to the signal-to-noise ratio (SNR) of
the VCG loop, rejecting beats with a low SNR compared
to an exponetially wheighted average. The second crite-
rion is based on the deviation of the present angle estimate
relative to the median absolute deviation of surrounding
angle estimates, a too large deviation resulting in rejec-
tion. By introducing a delay in the system and also chosing
proper parameter settings, changes in angle estimates due
to BPCs are not rejected. The method briefly described
here is based on the X84 rejection method [5]. Follow-
ing rejection, resampling of @(¢;) results in the evenly
sampled time series @(k), cf. Fig 1. Matched filters are
commonly used for detection of a known signal waveform
in noise. Considering BPC detection where the hypothe-
sis is that a BPC is reflected by a step change in the ro-
tation angles of the electrical axis, thus suggesting that

Computers in Cardiology 1999;26:45-48.



12 14

10

0 2 4 6 8

Figure 1: Example of angle estimates during BPCs.

the matched filter therefore should be a step function i.e.,
h(k) = [ -1 -1 1 1 ]. However, due to
rejection of angle estimates, the transition from one posi-
tion to another may not be instantaneous and is therefore
here modeled as a linear slope in the interval [ 1 6 |
where 8, is the number of samples previously removed.
The matched filter can thus be expressed as

-1, n=-N+1,..,0
—1+§—:, n=1,..60;
1, n=0y+1,..,0, + N

3)

The output of the matched filter is squared resulting in a
signal p(k),

h(n;0) =

p(k) = |@x (k) * h(n, 8c)| 4)

which is suitable for making a decision on whether a BPC
has occurred or not. A BPC is identified if the energy,

ga(l),

ki
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of a sequence of samples, [ Kk ], exceeds a certain
threshold, I". The BPC is then identified as the centre of
gravity of u(k) in the interval. The parameters defining the
summation limits, kl" and k7, are given from the following
conditions,

n(kp), pkf)
[ Il(kf) H(klb+1) ]

>

©)

in which g; and p, are limits of large and and small am-
plitude levels, respectively. The reason for this is to sep-
arate potential BPCs (u(k) > p) from certain nonBPCs
(u(k) < ps). K, is a refractory period during which no
sample should exceed p; introduced in order to separate
two BPCs from each other.

2.2,

The KLT technique applied to the different waves of
the ECG provides a useful tool to characterize their mor-
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Figure 2: Illustration of the detection algorithm described
in Sec. 2.1.. In the figure, &y = 2 (dash-dotted) and p
0.5 (dashed). The striped area, g4 (1) is limited by k} and
kg. The parameter K, = 5 s, resulting in that the complex
at 14.7 s is too distant to be part of the large complex at 14
s. The small complex is not sufficiently large to qualify as
a BPC on its own.

phologic changes [6, 7]. The scalar detector structure cal-
culates a combined distance function, F(¢;), for the QRS
and ST-T complexes according to the expression

)

where AgRrs, AsTT represent the weights for the functions
(experimentally selected to 0.8 and 0.2, respectively, since
ischemia affects mainly ST-T complex whereas a BPC af-
fects more the QRS complex), and fors, fsrT are the
distance functions for each complex defined as

S (s
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F(t:) = Agrs - fors(ti) + AsTr - fsrr(ti)
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with af, (t;) being the m:th order KLT coefficient at in-
stant ¢; for the j:th lead, and o, (ref) the mean reference
value estimated from the first 20 beats of the recording.
The F(¢;) function will in a combined way reflect changes
in QRS and ST-T complexes. '

Again, F(t;) is evenly resampled and a maiched fil-
ter with a step-shaped impulse response is used, followed
by a detector based on the use of a constant false alarm
rate (CFAR) strategy. CFAR detectors are used in radar
systems [8] and are based on the design presented in
Fig. 3. In a CFAR detector, each sample, z(k), is com-
pared (by using a comparator, C: z(k) > z(k + n),
n=[-4% -1 1 & ) to its M neighbors



and the number of cases in which this comparison is pos-
itive, 7, is determined. Then this rank number, r, has to
exceed a threshold, 7, to consider that a detection occur in
that sample. The threshold thereby depends on the values
of the surrounding samples. To avoid detecting very small
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Figure 3: Basic design of a constant false alarm rate
(CFAR) detector, and modification added to avoid very
small peaks detection (dashed lines).

peaks (low amplitude samples in the matched filter output
with lower values in the neighborhood) the classical design
was modified adding a second threshold, 7, needed for a
sample to represent a detection (z(k) > 72); (see modifi-
cation in Fig. 3, in dashed lines).

An example of the performance of the KLT-CFAR de-
tector is shown in Fig. 4 with annotated BPCs occurring
each minute. In the top panel, the estimated F (¢) function
is represented together with the BPC detections (+), and
the annotated instants of BPCs (A). In the bottom panel
the corresponding rectified matched filter output is repre-
sented.

3. Study population

First, a database (BPC-DB) which contains ECG
recordings with a predefined protocol of BPCs was con-
sidered. Each of the 20 recording lasts for 20 minutes and
presents the BPC pattern of supine—right side—supine—
left side, one change taking place every minute. Standard
12-lead ECG was recorded using low-noise ECG ampli-
fiers (Siemens—Elema AB, Solna, Sweden). The signal
was digitized at a sampling rate of 1 KHz with an ampli-
tude resolution of 0.6 V. A brief survey revealed that
BPC-induced changes affected both depolarization (QRS
complex) and repolarization (ST-T complex) intervals. The
influence of BPCs on the repolarization phase was ana-
lyzed looking at changes induced in STJ60 level (up to 180
V) and T wave amplitude (up to 600 xV), that could even-
tually yield false positives in ischemia detectors. In Fig. 5
the differences in the ECG for the three recording positions
in one subject are shown.
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Figure 4: BPC detection example: (a) F (k) function to-
gether with BPCs occurrences () and detections (+); (b)
rectified matched filter output of the F (k) function.

left side
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Figure 5: Beat waveforms for the three positions of record-
ing in the same subject.

Second, a database (STAFF III-DB) containing ECG
recordings obtained during prolonged percutaneous trans-
luminal coronary angioplasty (PTCA) as well as a corre-
sponding control recording, recorded prior to the interven-
tion, was evaluated. The STAFF III-DB was previously
used to evaluate the sensitivity of different indexes regard-
ing ischemia [9] and in this work will be considered with
the purpose to serve as a reference to measure the false de-
tections of ischemic events as BPCs in the BPC detectors.

4. Results

The evaluation of the detector performance was done in
terms of sensitivity, S = T—Pfﬁr%ﬁ, (where T'P and F'N de-
notes true positives and false negatives, respectively) and
positive predictivity, +P = = PTS, 5, (with F'P denoting
false positives) in the BPC-DB, and of number of false pos-
itives per hour (F Ph~1) in the STAFF III-DB. The results,
obtained after application of the two methods are shown
in Tab.1.




Table 1: Performance statistics for the BPC detectors on
the BPC-DB and STAFF III-DB. In the STAFF III-DB it
is distinguished between control (c) and angioplasty (a)
recordings.

BPC-DB STAFF III-DB
detector S +P FPh~1(c/a)
Spatial appr. 90 % 98 % 39/255
Scalar appr. 97 % 97 % 20.0/35.1
5. Discussion

Matching betwesn annotated BPCs and detections by
the system were considered within an acceptance interval
of 25 s. The reason for using such a long interval is the
presence of noisy beats around the BPC instant (the noisy
beats intervals were found to last up to 10 s).

Both detectors showed an acceptable performance on
the BPC-DB, but performed worse on the STAFF III-DB.
However, in some respect the results of the two methods
differ. The scalar approach has a higher S for the BPC-DB
which is compensated by a lower FPh~! for the spatial
approach. No conclusions could be made from these re-
sults, regarding which method is the better one, since a
higher S value also implies a higher FPR™1.

The varying results of the detectors concerning the two
databases may be explained by their properties. The BPC
database consists of well defined events recorded in an
ideal environement, whereas the STAFF III database may
not be the best one for representing ischemic episodes
commonly found in CCUs, since it is composed of ECGs
corresponding to sudden coronary occlusions. Therefore,
the real performance of the algorithms could be expected
to decrease for S and + P and increase for FPh1.

A BPC episode usually implied a few noisy beats (due
to myomuscular noise) around its location (a noisy beat can
be alow SNR beat or a beat with high baseline wandering).
It is possible to use the reverse (negative) implication to
reject possible false BPC detections in the following way:
no noisy beats found imply no BPC. Preliminary results
show that this extension is promising but further research
is needed on this direction.

6. Conclusions

This paper has shown that reliable detection of BPCs
is possible with methods based on both spatial and scalar
approaches. Further research is needed to study the de-
tector performance in a wider variety of both BPC record-
ings as well as ischemic recordings in order to determine
which method can work more efficiently for ambulatory
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purposes.
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