
4051

( , )f fL iθ

Figure 1. Single phase model of parallel connected circuit  

Describing Function Analysis of the Electric 
Nonlinear Model of a SRM Autonomous AC 

Generator

Abstract—This paper focuses on the Switched Reluctance 
Motor (SRM) used as self-excited generator. The phase 
inductance resonates autonomously with an external 
capacitor parallel connected producing an AC voltage 
almost sinusoidal. Although the voltage quality is not good 
enough to be directly connected the network utility it is able 
to be used as a battery charger in isolated locations. As the 
machine shows a nonlinear relationship among current, flux 
and angular position, the system equations are nonlinear 
therefore, analytical solutions describing its behaviour can 
not be found. However, it is shown that the system follows a 
known nonlinear second order equation describing 
mechanical systems. This experience is transferred to gain 
insight in this application. It is shown that the steady state 
can be identified as a limit cycle whose main variables are 
derived. The analysis procedure followed is known as the 
describing function method. It is an extended version of the 
frequency response method, and can be used to 
approximately analyze and predict nonlinear behaviour. 
The main use of describing function method is for the 
prediction of limit cycles in nonlinear systems. A simulated 
example is developed to illustrate the method and to derive 
the relationship among the electrical variables, useful for 
design purposes. 

I. INTRODUCTION

The Switched Reluctance Motor (SRM) can be used as 
a generator for braking purposes but the current is difficult 
to manage. That is the reason because it is not used for 
generating purposes. However, contrary to its common 
working manner where DC current is imposed in a phase, 
it can work with AC current naturally developed by a 
parallel connected resonant circuit formed by the phase 
inductance itself, an external capacitor and an AC load. 
Resonance is achieved for a rotor speed close to natural 
resonance of the circuit. Starting of resonance is built up 
by the remnant magnetic field of the phase’s magnetic 
circuit. Under resonant conditions the circuit variables 
grow up oscillating and ending in a dynamic steady state. 
This state is determined by the rotating speed, the load 
resistance and the resonant parameters. Although the 
machine can be studied on a single phase basis, Switched 

Reluctance Machines working as three-phase autonomous 
generator has been studied for differences in behaviour 
when the phases are star-connected with and without 
neutral [1]. Although in synchronous three-phase 
generators start-connected without neutral reject third 
harmonic and provides better voltage wave-shape, in 
Autonomous Switched Reluctance Generators (ASRG) 
worsens its functioning because third harmonic forms part 
of its intrinsic nonlinear behaviour. Besides, the resonant 
circuit is serially connected. In our case, the parallel 
connection shown in Fig. 1 is preferred because load 
modifications can be easily achieved. Similarities between 
ASRG and electronic oscillators have been pointed out in 
[2]. Hill’s equation describing parametric oscillators and 
its derived Mathieu’s equation, in case of low resistor 
load, help in system understanding. Hill’s equation is a 
linear differential equation with a periodic time varying 
parameter. This study sets the maximum value of load 
resistance as a function of working frequency and both 
maximum and minimum value of phase inductance. As 
the information provided is not enough to cope with 
specifications for design purposes, we propose in this 
paper a new approach to relate electrical parameters used 
in specifications. In this paper the equations of the single 
electric model are firstly derived. After stating the basics 
of the describing function method, the limit cycle of the 
nonlinear system is exploited to set the relationship among 
the electric variables. Finally, a set of specified data is run 
in a simulation model showing the limit cycle obtained. 
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Figure 2  Split of a nonlinear system into linear and nonlinear 
blocks. 

II. CIRCUIT EQUATIONS

Fig. 1 shows the circuit elements of the electric model. 
The phase inductance ( )ff iL ,θ shows a periodic 
dependence on rotor position and phase current. Current 
dependency is due to iron saturation and is responsible of 
its nonlinear behavior. The capacitor C and the load 
resistance Rc is externally connected. The Kirchhoff 
current law provides the following equations: 

Where linked flux ( )fi,θΦ and inductance ( )ff iL ,θ are 
nonlinear with current fi and periodic with position rotor 

position θ . Letting RL to be the load resistance, 

RL
Ui c

load = . When the Laplace transform is applied to

(1c): 
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The flux dependence on variables has explicitly been 
removed. Flux and current are assumed to be nonlinearly 
related by an odd function: 

( )2
21 1 Φ⋅+⋅Φ⋅= kki f (3)

The inductance definition leads to: 

When the current is low, flux is low and the inductance 
is periodic in θ  and non-saturated, thus it is not 
dependent on current and it is only dependent on position. 
(4) is approximated by the low order harmonic as: 

Substituting k1(θ) in (3) and taking into account that 
k1(θ) is also periodic: 
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Substituting (6) in (2b), it is obtained the nonlinear 
second order equation: 
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In (4) appears a term:  
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1
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This represents the attenuation factor of inductance due 
to flux amplitude. 2k  can be obtained from (4) by 
measuring phase inductance for maximum flux (or phase 
current) under aligned rotor position. 
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Figure 3 Nonlinear block representing the describing function. 

The next step is handling (10) by using the describing 
function analysis. 

III. DESCRIBING FUNCTION APPLIED TO DETECT A 
LIMIT CYCLE

Any system which can be transformed into the 
configuration in Fig. 2 can be studied using describing 
functions [3]. Hard nonlinearities as motor saturation 
identify systems that can be transformed like Fig.2. 

Rearranging terms in (10), results in (12): 

The idea underlying the method is based on the fact that if 
a limit cycle exists the forms of the signals are 
approximately sinusoidal. Due to the presence of the 
nonlinear block its output contains harmonics which will 
be filtered out by the linear block. 

Linear block in Fig. 3 should have low pass properties. 
Therefore, it can be assumed that the forms in the whole 
system are basically sinusoidal. The left side in (13) 
contains the nonlinear terms and the right side is the linear 
block. The linear block is a second order system with low 
pass properties. 

Let us now assume that there exist a self-sustained 
oscillation of amplitude A and frequency ω as shown in 
Fig. 3. The variables in the loop must satisfy. 

ωω
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Therefore, we have )(),()( yANjGy −⋅⋅= ω . Thus, 
the loop gain should be -1. Consequently, if limit cycle 
exist, the following equation should be met: 

IV. CALCULATION OF N(A,ω)

The left hand side terms in (12) represents the nonlinear 
operations to be performed on flux. The result is applied 
to the linear system represented in the right hand side. 
Thus, the output of left hand side represents ω(t). The 
procedure assumes a sinusoidal input to the nonlinear 
element (terms of left-hand side in (11)) of amplitude A 
and frequency ω, i.e. )sin()( tAtx ⋅⋅= ω  The output
ω(t) is of the form )sin()( θωω +⋅⋅= tMt .Thus, 

Letting the left-hand side in (12) to be ),( ωΦFNL . The 

first harmonic response of ),( ωΦFNL  to

)sin( tA ⋅⋅=Φ ω  is obtained as:  

Where from (12): 

From (15) and (16) results: 

By substitution of (17) in (14), ),( ωAN is obtained. 
From the right-hand side of (11), the linear transfer 
function block )(ωFL is obtained: 
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Figure 4 Phase-current trajectory followed clockwise by the 
machine. The enclosed area represents the mechanical energy 

transformed into electrical energy 
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Figure 5 Phase portrait of limit cycle. 

The natural frequency of the limit cycle will be 
approximately: 

The damped frequency of the limit cycle will be 
approximately: 

With 

By substitution of 0ω in (13) and solving for A taking 
into account that the result must be real, it yields the flux 
amplitude in the limit cycle: 

V. SIMULATION RESULTS

To test the proposed procedure an example is simulated 

using the following data: mFC 1= , Ω= 31RL , Ω= 1fR ,

mHL 280max = , mHL 40min = . The following 

expressions can be derived from data: mHLm 160= ,

145.9 −= HLa and 153.8 −= HLb . From (11), 

2
2 01.0 −⋅= Wbk .

To test the analytic equations obtained, a simulation 
model of circuit in Fig. 1 has been developed as follows:  
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Where cv  is the capacitor voltage and φ  is the linked 
flux.  

The inductance ),( φtL  is derived from (4), (5) and (11):  

The generator has 3 pole pairs and it is running at
rpmn ⋅= 291 . The predicted angular frequency by (20) is 
srad /7.98 ⋅ against srad /4.91 ⋅ obtained in the 

simulator. The predicted flux amplitude obtained by (22) 
is Wb⋅3.12 against Wb⋅5.4 obtained by the simulator.  

Fig. 4 shows the linked flux versus phase current. The 
trajectory is scanned clockwise. The enclosed area 
represents the mechanical energy transformed into 
electrical energy. 

Fig. 5 shows the phase portrait of the two state variables 
phase linked flux and capacitor voltage. This voltage is 
applied to the resistor load.  

Fig. 6 shows the capacitor voltage and the phase 
inductance. The wave shape deformation indicates the 
presence of harmonics. It is worth to notice that capacitor 

( ) ( ) affa LRRLsCRRLLsCRL

FL

⋅++⋅⋅⋅⋅++⋅⋅
=

=

1
1

)(

2

ω

(18)

CRL
LRRL af

⋅
⋅+

=
)(

0ω (19)

2
0 1 ξωω −=n

(20)

af

fa

LRRL
CRRLL

⋅+
⋅⋅⋅+

=
)(

1
2

0ωξ  (21) 

( )ba

b

LLk
L

A
⋅−⋅⋅

⋅
=

23
2

2
(22)

)()(),( φωθφ attf ktLtL ⋅== (24)



4055

0, 0,1

1000,

500,

500,

1000,

time (s)

C
ap

ac
ito

r V
ol

ta
ge

 (V
), 

In
du

ct
an

ce
 (m

H
)

Figure 6 Capacitor voltage (V) in red and phase inductance (mH) 
in blue. Both are periodic but inductance oscillates at double 

frequency. 

voltage oscillates at half frequency of inductance. 
The harmonic contents are in Table 1. As the curve 

shows shift symmetry, it only contains odd harmonics. 
The first harmonic of capacitor voltage is 308Vrms and 

the THD is 16.8%. This wave does not have enough 
quality to be connected to the main. However, it can be 
used to non-critical loads like a battery bank in isolated 
sites. It can be loaded through a low cost rectifier. The 
ratio between phase current and load current is 3. The 
power developed in the load resistance is 3kW.  

VI. CONCLUSSIONS

Switched reluctance machines can be used like self 
excited generators driving AC currents instead of DC 
ones, as usual. It has been shown that phase current and 
capacitor voltage oscillates at a frequency half of the 
phase inductance. The circuit equations are nonlinear due 
to saturation and inductance periodicity with rotor 
position. This makes difficult understanding the machine 
behaviour. The equations exhibit a limit cycle whose 
characteristic parameters were analyzed using describing 
functions. Analytical formulations were derived 

describing relationships among the electric variables. The 
formulations were applied to a simulated example. 
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TABLE I. 
HARMONICS IN CAPACITOR VOLTAGE 

Order 
h

Amplitude 
(VRMS) V(h)/V(1) 

1 308.4 1 

2 - - 

3 50.3 0.162 

4 - - 

5 13.9 0.042 

6 - - 

7 4.5 0.013 

THD=16.8% 


