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Abstract

In this work, a set of feature vector normalization methods based on the MMSE criterion and stereo data is
presented. They include Multi-Environment Model-based Linear Normalization (MEMLIN), Polynomial MEMLIN
(P-MEMLIN), Multi-Environment Model-based Hlstogram Normalization (MEMHIN), and Phoneme Dependent
MEMLIN (PD-MEMLIN). Those methods model clean and noisy feature vector spaces using Gaussian Mixture
Models (GMMs). The objective of the methods is to learn a transformation between clean and noisy feature vectors
associated with each pair of clean and noisy model Gaussians. The direct approach to learn the transformation
is by using stereo data; that is, noisy feature vectors and the corresponding clean feature vectors. In this work,
however, a non-stereo data based training procedure, is presented. The transformations can be modelled just like a
bias vector (MEMLIN), or by using a first order polynomial (P-MEMLIN) or a non-linear function based on histogram
equalization (MEMHIN). Further improvements are obtained by using phoneme-dependent bias vector transformation
(PD-MEMLIN). In PD-MEMLIN, the clean and noisy feature vector spaces are split into several phonemes, and each
of them is modelled as a GMM. Those methods achieve significant word error rate improvements over others that are
based on similar targets. The experimental results using the SpeechDat Car database show an average improvement
in word error rate greater than %8in all cases compared to the baseline when using the original clean acoustic
models, and up to 83 when training acoustic models on the new normalized feature space.

Index Terms

Feature vector normalization, Minimum Mean Square Error, robust speech recognition, Gaussian mixture models.

I. INTRODUCTION

When training and testing acoustic conditions differ, the accuracy of speech recognition systems rapidly degrades.
To compensate for the effects of additive and convolutional noises, which are the main cause of the mismatch
between training and recognition spaces, robustness techniques have been developed along the following two main
lines of research:

e Acoustic model adaptation methods, which map acoustic models from training space to recognition space.
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e Feature vector adaptation/normalization methods, which map recognition space feature vectors to the training
space.

Some of the techniques can be combined to generate hybrid solutions, which are effective under certain conditions
[1], [2]- The choice of a robustness technique depends on the characteristics of the application in each situation.
In general, acoustic model adaptation methods produce the best results [3] because they can model the uncertainty
caused by the noise statistics. Well-known successful acoustic model adaptation methods include Maximum A
Posteriori (MAP) [4], Maximum Likelihood Linear Regression (MLLR) [5], Parallel Model Combination (PMC)

[6], and Vector Taylor Series (VTS) [7]. However these methods require more data and computing time than do
feature vector adaptation/normalization methods.

Feature vector adaptation/normalization methods fall into one of three main classes [8]: high-pass filtering, model-
based techniques, and empirical compensation.

High-pass filtering contains methods such as Cepstral Mean Normalization (CMN) [9], [10] and RelAtive SpecTral
Amplitude (RASTA) processing, [11]. Although the results produced by those methods are limited individually,
some of them, particularly CMN, are included in almost every speech recognition systems because they use simple
and effective procedures.

Model-based methods assume that a mismatch between training and recognition spaces can be represented by a
structural model of environmental degradation. The parameters of the structural model are estimated and applied to
the appropriate inverse operation to compensate the recognition signal. Examples of model-based methods are Vector
Taylor Series for normalization (VTS) [7], Codeword Dependent Cepstral Normalization (CDCN) [12], Minimum
Mean Square Error Log Spectral Amplitude estimator (MMSE-LSA) [13], and Spectral Subtraction (SS) [14].

Empirical compensation methods that use direct cepstral comparisons are entirely data driven. Typically, they
require stereo data but sometimes “blind” approaches are used [7]. Empirical compensation methods need a training
phase where some transformations are estimated by computing the frame-by-frame differences between the vectors
representing speech in the clean and noisy environments (stereo data). Algorithms used in that approach include
multivariate Gaussian-based cepstral normalization (RATZ) [7], Stereo-based Piecewise Linear Compensation for
Environments (SPLICE) [15], and Probabilistic Optimum Filtering (POF) [16].

Independently of the feature vector normalization method, several algorithms assume a prior probability density
function (pdf) for the estimation variable. In those cases, a Bayesian estimator can be used to estimate the clean
feature vector. The most commonly used criterion is to minimize the Mean Square Error (MSE), and the optimal
estimator for this criterion, Minimum Mean Square Error (MMSE), is the mean of the posterior pdf. Many different
methods, such as CDCN, VTS, RATZ, and SPLICE use the MMSE estimator to compute the estimated clean feature
vector.

This work focuses on empirical feature vector normalization based on stereo data and the MMSE estimator.
Some methods, such as VTS, CDCN, POF, and RATZ, assume that the clean feature space can be modelled using a
Gaussian Mixture Model (GMM). However, although the uncertainty between clean and normalized feature vectors

is reduced, a mismatch is generated in the estimation of the a posteriori probability of the clean model Gaussian,



given the noisy feature vector [7] in the normalization. To avoid the problem and maintaining the uncertainty
improvement, some other algorithms, e.g., SPLICE, model the noisy space using a GMM. In general, noisy space
modelling produces better results than does clean space modelling; however, both modelling methods still have
high uncertainty when learning transformations because they model only the clean or the noisy space.

To improve the results obtained using state-of-the-art empirical feature normalization methods, we propose several
solutions based on the joint modelling of clean and noisy space. We present Multi-Environment Model-based Linear
Normalization (MEMLIN) [17], which splits noisy space into several basic environments and models each basic
noisy and clean feature spaces using GMMs.

Most empirical feature vector normalization methods compute a bias vector transformation for each clean model
Gaussian, e.g., RATZ, each noisy model Gaussian, e.g., SPLICE, or each pair of clean and noisy model Gaussians,
e.g., MEMLIN. In this work, we propose several approximations to modify the simple bias correction term
used in MEMLIN. A first-order polynomial transformation, Polynomial Multi-Environment Model-based LInear
Normalization (P-MEMLIN) addresses the use of a different slope and bias term for each pair of clean and
noisy model Gaussians. A non-linear transformation, Multi-Environment Model-based Histogram Normalization
(MEMHIN) [18] addresses the use of a histogram equalization for each pair of clean and noisy model Gaussians.
Those two new methods can compensate for the effects of the noise over the means and the variance of the feature
vectors.

To reduce the uncertainty between the new normalized feature vectors and the acoustic models, we propose
a Phoneme-Dependent Multi-Environment Model-based Linear Normalization (PD-MEMLIN) [19] in which the
clean and noisy spaces are split into phonemes that are modelled using GMMs. The bias vector transformation is
defined for the pair of clean and noisy model Gaussians of each phoneme.

In many acoustic environments and training databases, stereo data are unavailable. To overcome the limitation
of the need for stereo data, a non-stereo data training algorithm that uses only noisy feature vectors is proposed.
That “blind” technique is applied over the PD-MEMLIN method, [20].

Although these new methods attempt to map the noisy feature vectors to the clean space, the transformation is
not perfect; therefore, there remains a mismatch between clean space and the new normalized space. To compensate
for that mismatch, we propose to adapt the acoustic models to the new normalized space.

To compare the performance of the proposed methods in a real and dynamic environment, experiments were
carried out using the Spanish SpeechDat Car database [21]. Car noise characteristics depend on driving conditions
[9], [22] and the Lombard [23] effect can be important; consequently, speech recognition in cars is a difficult task
that can generate valid results with which to compare the different techniques.

This paper is organized as follows: In Section Il, the noise effects and the basic MMSE-based feature vector
normalization methods are detailed. In Section I, the Spanish SpeechDat Car database and the results from
the different state-of-the-art MMSE-based feature vector normalization techniques, CMN, RATZ, SPLICE, and
MEMLIN are explained. In Section IV, P-MEMLIN, MEMHIN, PD-MEMLIN and “blind” PD-MEMLIN are

described, and the results of these methods are presented. Finally, a discussion and the conclusions are presented



in Section V.

Il. NOISE EFFECTS AND BASICMMSE-BASED FEATURE VECTOR NORMALIZATION METHODS

We assume a general, simplified approximation of speech signal degradation based on additive noise and convo-
lutional noise [12]. In this case, the noisy signal in the Mel Frequency Cepstral Coefficient (MFCC) dgmain,

can be modelled as

yt:mt+f(mt7nt7ht), (1)

wheret is the time frame indexg; is the clean MFCC vector; is the additive noise MFCC vector, arig is

the corresponding convolutional noise MFCC vector. The random nature of the additive and convolutional noises
results in one to many mapping between clean and noisy feature spaces: a given clean feature vector can generate
different noisy feature vectors, and vice versa, which creates an uncertainty.

Figure 1 shows the scattergrams and histograms for the first MFCC coefficient in non-silence frames for clean
and noisy feature vectors from different degradation conditions. Note that the uncertainty between clean and noisy
coefficients always exists, even when controlled convolutional noise only is considered (Fig. 1.a). The convolutional
noise mainly shifts the mean of the coefficients, whereas additive noise (Fig. 1.b) modifies the pdf, reducing the
variance of the coefficients. In the same way, the real car environment (Fig. 1.c) modifies the mean and variance,
jointly.

To compensate for noise effects, there are several kinds of feature vector normalization methods (Section I), but
we focus on empirical methods based on the MMSE criterion. Therefore, given the noisy feature ywedta,

estimated clean feature vectay, is obtained by using the MMSE criterion as

#, = Eloly] = /X & plalyr)dz, @

wherez is the clean feature vector, apdz|y,) is the pdf ofx giveny;. The wayp(z|y;) andz are approximated

determines the different MMSE-based feature vector normalization methods.

A. Basic MMSE-based feature vector normalization methods

There are mainly three basic feature vector normalization methods based on the MMSE criterion that have been
used extensively: CMN, which is a very simple method, RATZ [7], and SPLICE [15]. In the CMN method, no
assumptions are made in estimatjf{g|y: ), and the clean feature vectaer,is approximated ag ~ ¥ (y;, r) = ys—r,

wherer is a bias vector transformation betwegnand xz. With that approximation, for CMN, (2) becomes to

Ty = /X (ye — m)p(z|ys)de = ye — 7. 3)

To estimate the bias vector transformatienthe mean square errd, is defined and minimized with respect to
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Fig. 1. Scattergrams and histograms for the first MFCC coefficient in non-silence frames between clean (x-axis) and contaminated (y-axis)
in several degraded conditions: (a) controlled convolutional noise when the filter response is longer than the Hamming window used in the
computing of MFCC, (b) additive car noise with 0dB SNR, and (c) real car condition. The line in the scattergrams represents the function

T=y.

r = arg min(€) = arg min(B[(Z: — :)%)) = Blye] — Elz.], (4)

T T

where EJe] is the corresponding mean. In some cases, the mean of the clean feature vectors is removed before
training the acoustic models and, then, the bias vector transformation for CMN is computed &fy;|. Actually,
the basic CMN algorithm, or an extension of it, is considered a standard and it is used in almost every speech
recognition systems because of the low computing time and satisfactory results.

To improve the CMN approximation, RATZ makes two assumptions. The first assumption consists of modelling

the clean space using a GMM



p(x) =Y p(zlss)p(sa), ()

p(x|sz) = N(z; ps,, 2s, ), (6)

where s, ¥,,, andp(s,) are the mean, the diagonal covariance matrix, and the a priori probability associated
with the clean model Gaussia. The second assumption for RATZ is to approximate the clean feature vector as
x =~ U(y,rs,) = y: —rs,, Wherers_ is a bias vector transformation betwegnand x for the the clean model

Gaussians,. The estimation of, is included in [7]. With the two assumptions, RATZ makes (2) become

By~ /X > (e — 1o, )p(@, soln)de = ye = > 1o, p(salye), ©)

wherep(s.|y:) is the a posteriori probability of the clean model Gaussiangiven the noisy feature vectay,

and it can be computed using (5), and (6) assuming an additive effect of the noise in the MFCC domain [7].
Although RATZ can improve the performance concerning CMN because it models better the clean space, in the

normalization, the estimation @f s, |y;) can produce a mismatch. To avoid it, SPLICE proposes to model the noisy

space instead of the clean one using GMM

pye) = p(ylsy)p(sy), ®)

Sy

(yelsy) = N (e s, » s, ), 9)

where s, denotes the corresponding Gaussian of the noisy medel,X; , andp(s,) are the mean vector, the

diagonal covariance matrix, and the a priori probability associated wyithAt the same time, the clean feature
vector,z, is approximated as ~ ¥(y;,rs,) = y: — rs,, Wherer, is a bias vector transformation betwegnand

x for the noisy model Gaussias,. The estimation of-, is evaluated in [15]. Therefore, SPLICE transforms (2)

into

b [ 3 = s, s = = 3 plsylon), (10)

wherep(s,|y.) is the a posteriori probability of the noisy model Gaussiap,given the noisy feature vectoy,,
computed using (8), and (9).

The bias vector transformations of RATZ and SPLICE depend on the environment. So, to consider several acoustic
conditions, RATZ and SPLICE multi-environment methods have been developed: Interpolated RATZ (IRATZ) [7]
and SPLICE with environmental model selection [15]. In those methods, noisy space is split into several basic
environments concerning similar acoustic properties (Signal-to-Noise Ratio, SNR, spectral shape...), and the bias
vector transformations are computed independently for each basic environment. The final resulting transformation
is computed as a weighted sum of all of the basic environment bias vector transformations (soft decision), or using

only the most probable basic environment bias vector transformations (hard decision).



B. Multi-Environment Model-based Linear Normalization, MEMLIN

Multi-Environment Model-based Linear Normalization (MEMLIN) proposes a general MMSE-based framework
by providing a GMM modelling of the clean and noisy spaces. Noisy space is divided in a combination of basic
acoustic environments. Therefore, a bias vector transformation is associated with each pair of Gaussians from the
clean and the noisy basic environment spaces.

1) MEMLIN approximations:In MEMLIN, three approaches are used:

¢ Noisy space is divided into a combination of several basic environmen#d the noisy feature vectorg,,

are modelled as a GMM for each basic environment

Pe(ye) = > pyelst)p(ss), (11)
p(yelsy) = N(ye; psg , B, (12)

wheres;, denotes the corresponding Gaussian of the noisy model far Hasic environmenwsz, Tse, andp(sy)
are the mean vector, the diagonal covariance matrix, and the a priori probability associatef. with
e Clean feature vectors are modelled using a GMM: expressions (5) and (6).
e Clean feature vectors can be approximated as a linear function of the noisy feature vector, which depends on
the basic environment and the clean and noisy model Gaussiaasy(yt,sm,sg) =Yt — Tsyse Wherersw,sz is
a bias vector transformation between noisy and clean feature vectors for each pair of Gayssaaniss; .

2) MEMLIN enhancementWith those approximations, MEMLIN transforms (2) into

jt =Yt — / Z Z Z Tsm,szp(x7 Sz, €, 5§|yt)d33 =Yt — Z Z Z Tsm,s;p(e|yt)p(5§|yta e)p(5w|yt7 €, Sge!)a (13)
X e Sz

wherep(e|y;) is the a posteriori probability of the basic environmertk; |y:, e) is the a posteriori probability of the
noisy model Gaussian¢, given the feature vectoy,, and the basic environmer, Those two terms are computed
for each frame applying (11) and (12). Finally, the cross-probability model,|y;, e, s ), is the probability of the
clean model Gaussiai,, given the feature vectory;, the basic environmeng, and the noisy model Gaussian,
sy- That term, along with the bias vector transformatio;;,,sz, is estimated in a training phase using stereo data.
The a posteriori probability of the basic environmen(i|y:), is computed recursively by applying (11) and (12)

as

plely:) = B plelys—1) + (1 — 5)2%7 (14)

where 3 is the memory constand (< 8 < 1), andp(e|yo) is considered to be uniformly distributed over all the
basic environments. Considering the defined acoustic environmenmtas to be close to 1 due to the succession

of the basic environments along the time is not very fast. So, in this Wdrks been set to 0.98. The a posteriori



probability of the noisy model Gaussian, given the feature vegtoand the basic environment, p(sg|y:, e) can

be computed considering (11) and (12) as

_ p(wlsy)p(sy)
e P(yelsy)p(sg)

3) MEMLIN training: Given a stereo data corpus for each basic environniéht,Y.) = {(z, v5); ...; (z, 5. );

p(syyt,e) (15)

o (mi,yi)}, with ¢, € [1,T,.], the bias vector transformatiomsw,s;, is estimated by minimizing the defined

mean weighted square eerg,wsg, with respect to:"szys;
551,55 = Zp(swmfeae)I?(SZ‘yfev@(xfe - ytee + Tsw,sg)Qa (16)
tfi

g min(es, ) — S Pl ORIV o, — w7
S, p(salat, )p(s15f,.)

: 17)

wherep(s;|z7_,e) is the a posteriori probability of the clean model Gaussian,given the clean feature vector,

x7_, and the basic environment, It can be estimated by applying (5), and (6)

p(mfe|5w)p(3x)
S p(iﬁfe |3I)p(5w)
The cross-probability modeh(s.|y:, e, s;), is simplified by avoiding the time dependence given by the noisy

p(sz|$f€,6) - Z (18)

feature vectory;, (p(s:|y:, e, sy) = p(sz|sy, €)). The termp(s.[sy, e) can be estimated by using relative frequency,
a hard solution, or using (11), (12), (5), and (6), soft decision. Therefore, the corresponding expression for the hard
decision is

_ COn(salsy)

plsslsh ) = =, (19)

v

WhereON(sm|s§) is the count number of times that the most probable pair of Gaussiafsaisd sy for all pairs

of stereo training data of the basic environment, anﬂfss is the count number of times that the most probable
Gaussian for noisy training feature vectorssfsfor the e basic environment.

The estimation of the cross-probability model using the soft decision is

e 2o p(xe]s0)p(ye.|sy)p(s2)p(8)
P8slsy €)= S~ S (. [2)p (w55 (52 )p(55) (20)

When there are enough data to estimate the cross-probability model, both solutions, hard and soft, obtain similar

results: no significant changes in recognition were obtained in this case. However, when there are not enough data,
the soft option provides a more consistent solution. The hard solution was used in all the experiments carried out
with MEMLIN in this work.

In summary, MEMLIN associates a bias vector transformation to each pair of noisy and clean Gaussians. So,

comparing against RATZ or SPLICE, which define a bias vector transformation from a Gaussian to the whole



noisy or clean space, the mapping space associated to each MEMLIN transformation is more enclosed, having
a less uncertainty region. Therefore, given an appropriate cross-probability model, the MEMLIN is expected to

outperform RATZ or SPLICE performances.

1. THE SPEECHDAT CAR DATABASE AND RESULTS USING BASIC FEATURE VECTOR NORMALIZATION

MMSE-BASED METHODS

To compare the performance of the basic multi-environment MMSE-based feature vector normalization methods
(IRATZ, SPLICE with environment model selection, and MEMLIN) in a real, dynamic, and complex environment,
a set of experiments were performed using the Spanish SpeechDat Car database [21]. Seven basic environments
were defined as follows

E1l: car stopped, motor running.

E2: town traffic, closed windows, and climatizer off (silent conditions).

E3: town traffic and noisy conditions (windows open, Aoidclimatizer on).

E4: low speed, rough road, and silent conditions.

E5: low speed, rough road, and noisy conditions.

E6: high speed, good road, and silent conditions.

E7: high speed, good road, and noisy conditions.

In this study, two channels of the database recorded simultaneously (stereo data) have been used: A clean signal
from a CLose talK channel (CLK), which was recorded using a Shure SM-10A microphone, and a noisy signal
from a Hands-Free channel (HF), which was recorded using a Peiker ME15/V520-1 microphone located on the

ceiling in front of the driver. HF signals are used in recognition tasks.

TABLE |

NUMBER OF UTTERANCES AND WORDS FOR TRAINING AND TESTING CORPORA USED IN ALL THE EXPERIMENTS

El E2 E3 E4 E5 E6 E7 Total

# utterancedrain | 3,393 3,122 2,356 2,106 2,550 2,038543 | 16,108

# utterancedest 199 223 136 152 200 120 56 1,086

# wordstrain 10,542 9,652 7,160 6,517 7,908 6,269,673 | 49,717

# wordstest 1,049 1,166 715 798 1,049 630 294 | 5,701

For speech recognition, the feature vector is composed of the 12 MFCCs, first and second derivatives and the
delta energy, giving a final feature vector of 37 coefficients computed every 10 ms using a 25 ms Hamming window.
On the other hand, in this work, the feature vector normalization methods are applied to the 12 MFCCs and log
energy, only, whereas the derivatives are computed over the normalized static coefficients.

The recognition task is isolated and continuous digits recognition. Word acoustic models are built from a set

of 674 left and right context-dependent and 25 context-independent units. Each unit is modelled by one-state
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continuous density HMMs with 16 Gaussians. In addition, two silence models for long and interword silences are
considered. Each phoneme is modelled by the left contextual unit, the incontextual unit and right contextual unit.
So, for example, the word acoustic model for Spanish digit “dos” (“two”) can be obtained by the concatenation of
the following units: /#< d/ /d/ /d > o/ /d < o/ Jo/ Jo > s/ Jo < s/ [s/ /s > #/, where# is the silence

unit, / < / is the left context-dependent unit/ is the context-independent unit and finally> / is the right
context-dependent unit.

A training corpus for each basic environment is used for training acoustic models and learning the corresponding
bias vector transformations and the cross-probability models (16,108 utterances for all basic environments and
different tasks: isolated and continuous digits, spelling, dates, commands and hames). The testing corpus is composed
of 1,086 utterances for all basic environments, and different speakers from the training corpus. The composition of
the training and testing corpora is explained in detail in Table I, where it is included the number of utterances and
words for each basic environment. No Voice Activity Detector (VAD) is applied in any case.

The Word Error Rate (WER) baseline results for each basic environment are presented in Table Il, where MWER
is the Mean WER, which is computed proportionally to the number of words in each basic environment (see Table
). The CMN method is applied to testing and training data. “Train” column refers to the signals used to obtain the
corresponding acoustic HMMs; if they are trained with all clean training utterances, the column is marked CLK,
and if the column is marked HF, the acoustic models are trained with all noisy training utterangeisdidBtes
that specific acoustic HMMs for each basic environment are applied in the recognition task (environment match
condition). “Test” column indicates which signals are using for recognition: clean, CLK, or noisy, HF.

TABLE I

WER BASELINE RESULTS IN %, FROM THE DIFFERENT BASIC ENVIRONMENTYE1,..., E7)WHEN CLEAN (CLK IN THE
TRAIN COLUMN) OR NOISY (HF IN THE TRAIN COLUMN) ACOUSTIC MODELS ARE APPLIED HF} INDICATES THAT SPECIFIC
ACOUSTIC MODELS FOR EACH BASIC ENVIRONMENT ARE TRAINED“TEST’ REFERS TO THE RECOGNIZED DATAEITHER AS

CLEAN (CLK) OR NoOISY (HF).

Train  Test El E2 E3 E4 ES E6 E7 MWER (%)

CLK CLK | 0.38 2.06 1.40 0.50 0.57 0.16 0.00 0.86

CLK HF 429 11.06 11.61 14.79 1449 11.2720.07 11.52

HF HF 1.72 549 3.08 4.01 4.86 3.33 5.78 3.95

HFf  HF 124 437 2.10 3.38 3.63 1.11 3.40 2.82

Table Il shows the effect of real car conditions, which produces a significant increase in WER in all of the basic
environments, (Train CLK, Test HF), concerning the rates for clean signal, (Train CLK, Test CLK). When acoustic
models are retrained using all basic environments, (Train HF) MWER decreases considerably. Finally, the lowest
MWER when the noisy signal is used for recognition is obtained for environment match condition, (Trgin HF
2.8%.



11

80

al
o

Mean improvement, MIMP, in %.
5
<

. o IRATZ
M -=- SPLICE MS

%0 —— MEMLIN
0 20 40 60 80 100 120

Number of Gaussians per environment.

Fig. 2. Mean improvement in WER for Interpolated RATZ (IRATZ), SPLICE with environmental model selection (SPLICE MS) and MEMLIN.

Figure 2 shows the mean improvement in WER (MIMP)%nfor each of the multi-environment basic feature
vector normalization methods based on MMSE (IRATZ, SPLICE with environmental model selection, SPLICE MS,
and MEMLIN). A 100% MIMP would be obtained when the MWER is the same as in clean conditions. So, given
a MWER, the corresponding MIMP will be

100(MWER — MWERcLKk—-HF)
MWERcLk-cLxk — MWERcLK-HF’

whereMW ER¢c Lk —crk IS the mean WER obtained with clean conditions (0.86 in this case)VBRdE Rerx _HF

MIMP = (21)

is the baseline (11.53). In order to compare all the methods, the MIMP has been depicted with respect to the
number of Gaussians per basic environment, because it gives an idea of the computing cost. The SPLICE MS
method always produces better results than does RATZ, which is because of the assumption of the noisy model
when the a posteriori probability of a clean model Gaussian, given the noisy feature vector is computed [7]. On
the other hand, the MEMLIN algorithm improves the results based on SPLICE MS for any number of Gaussians
per basic environment due to the projection space associated to a bias vector transformation in MEMLIN is smaller
than SPLICE MS or IRATZ, being the transformations more specific. To obtain more specific transformations in
MEMLIN, the number of them associated to a noisy or clean model Gaussian is higher than in SPLICE MS or
IRATZ, but the computing cost in the normalization process is almost the same.

Figure 3.a and Fig. 3.b show the comparative histograms and scattergrams between clean and noisy and normalized
first MFCC coefficients in non-silence frames from E4 basic environment. The normalized coefficients are obtained
using MEMLIN with 128 Gaussians per basic environment. Although all terms in SPLICE MS normalization
are obtained directly using the noisy GMM, the corresponding histograms and scattegrams are visually similar
to MEMLIN ones. However, MEMLIN histograms and scattegrams can be improved considerably if the cross-
probability model is estimated properly (it will be considered in the Section V). It can be observed that the
normalized signal histogram is close to the clean signal one, although there is still a considerable uncertainty

between clean and normalized coefficients (Fig. 3.b.2). The peak that appears in the normalized signal histogram
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Fig. 3. Scattegrams and histograms between the first MFCC coefficient in non-silence frames for clean (x-axis) and contaminated (a) or

normalized (b) using MEMLIN with 128 Gaussians per basic environment (y-axis) signals for the E4 basic environment. Also, the scattegram
and histogram when the transformations of MEMLIN with 128 Gaussians are computed only with non-silence frames are presented (c). The

line in the scattergrams represents the functios y.

(Fig. 3.b.1) is due to the transformation of noisy feature vectors towards the clean silence. This problem can be
solved if an efficient VAD were used in training and during the normalization. To confirm this, the noisy signals were
normalized with the transformations and the cross-probability models for MEMLIN with 128 Gaussians trained only
with the non-silence frames. Figure 3.c presents the scattegram and histogram between the first MFCC coefficients
in non-silence frames for clean and normalized with this new training condition signals. It can be observed that the
peak disappears.

The most representative results from each of the methods are summarized in Table Ill, indicating the number of

Gaussians per basic environmefhtQaussian) required to obtain the best corresponding values.
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TABLE Il
BESTMEAN WER (MWER)AND MEAN IMPROVEMENT IN WER (MIMP) IN % FROM INTERPOLATEDRATZ, SPLICE
WITH ENVIRONMENTAL MODEL SELECTION, SPLICE MS,AND MEMLIN, WITH THE REQUIRED NUMBER OFGAUSSIANS

PER BASIC ENVIRONMENT INDICATED.

# Gaussian MWER%) MIMP (%)

Interpolated RAZ 64 6.32 48.82
SPLICE-MS 128 4.65 64.46
MEMLIN 128 4.16 69.09

IV. IMPROVEMENTS OVERMEMLIN

There are two important approximations in MEMLIN expressions that can affect the final performance of the
method. One is the selection of the linear modelfarssociated with a pair of Gaussians that has an independent
termonly @ ~ V(y;, 52, 85) = Ut —Tsl,s;)- That model compensates for the mean shift, but not for the modification
of the variance. The second approximation involves treating all of the sounds in the same way. So, there is always
a bias vector transformation which maps from a noisy model Gaussian to every clean model one and it can
produce, for example, that several non-silence noisy feature vectors are mapped towards the clean silence. To
overcome these approximations, we consider different solutions. To develop a more realistic madeldasse a
modification of ¥(y;, s, s;) and define two novel multi-environment feature vector normalization methods based
on MMSE: Polynomial MEMLIN (P-MEMLIN), which uses a complete first order polynomial approximation, and
Multi-Environment Model-based Hlstogram Normalization (MEMHIN), which assumes a non-linear model.

Although the MEMLIN algorithm achieves significant improvements over other basic MMSE-based feature vector
methods, the variance of the error between clean and noisy feature vectors can be reduced if more specific bias vector
transformations are estimated. To do that, we propose learning phoneme-dependent bias vector transformations. That
modification of the MEMLIN is called the Phoneme Dependent MEMLIN (PD-MEMLIN).

A. \I’(yt,sw,sg) modifications: P-MEMLIN and MEMHIN

1) Polynomial MEMLIN, P-MEMLIN:The novel model¥ (y:, s., s;,), for Polynomial MEMLIN is

:I,‘(Z) ~ \IJ(yh Sz 52)(2) = Qg5 (Z)yt(z) - bsz,sg (Z)v (22)

where: is the coefficient index, andsm,sz andb,, s . are the slope and the independent terms of the model,
respectively. Both depend on the basic environment and on clean and noisy model Gaussians. Note that it is

assumed that the feature coefficients are independent. Using P-MEMLIN, (2) becomes

8e(1) =D D (s, 0 (D)ye(6) = bs, s (0))p(elye)p(sS ye, €)p(salys €, 55) Vi (23)

e sg S



14

The only modification to MEMLIN isW(y;, s.,sy); therefore, the expressions efely:), p(s;|y:,e), and
p(sz|yt, e, sy) are estimated as (14), (15), and (19) or (20), respectively. On the otherdand(i) andbs, s (i)

are computed in the training phase using stereo data

. ng,se (Z)
as,,sq (i) = yiy(i), (24)
N Tsass (4) y . z .
sz,S:'Z (Z) = Yy (l) :usl.,sz (Z) - :usm,s; (Z)? (25)
SJHSZ

where oy, se( ) ando? Se( ;) are thei coefficients of the standard deviations of clean and noisy feature vectors,
respectively, associated with the pair of Gaussignands. ug Se( ) andu? (i) are theit® coefficients of the

€T Yy
means of clean and noisy feature vectors associated syind s;. They are computed as follows, wherecan

bez ory

>, P(Szlwe )p(sylye. )z, (4)

Houy ) = = e (s ) (26)
S, p swm P5le) (oo (6) — 2, (D
\/ “o(salee ) p(s5 o) ’ @7

Note that if the standard deviation terms are equﬁglwgg (1) = Ugw,sg (1), Vi), the algorithm expressions are the
same as those in the MEMLIN.

2) Multi-Environment Model-based Hlistogram Normalization (MEMHIMithough P-MEMLIN uses a first
order polynomial to compensate for the variance transformations, sometimes noise can produce a more complex
modification of clean and noisy feature pdfs associated with a pair of Gaussians. In that case, the linear approximation
for (y., s, s;) of MEMLIN or P-MEMLIN is not the best option; therefore, we propose a non-linear model based

on histogram equalization. The new model is expressed as

\Il(ytasivv y) Cz iT,sy (Cy,sm,s; (yt))v (28)

whereCz,sI,Sz is the clean feature vector cumulative probability associated syithand Sy Gaussians, and',, ;T s

is the reciprocal functionC, s, . is the noisy feature vector cumulative probability associated wijtfand s,

Gaussians. For MEMHIN, (2) takes the following expression

ZZ Z :L’sz,se ySI,SZ(yt))p(e|yt)p(s§|yt7 ) (Sm|yta €, y) (29)

e ph eph
The only difference between MEMLIN and MEMHIN i@ (y;, s., s;); therefore, the probabilitiep(ely:),
p(sylys, e), andp(sz|yz, e, sy) are estimated following (14), (15), and (19) or (20), respectively. To com@yite -
and Cy,s,s2 the n band histograms associated with and s;, for each component of the noisy and clean feature

vectors are obtained in the training phase, assuming that the components are independent. To estimate the histograms



15

for each pair of Gaussians, the components of the feature vectors are weighted by the product of the a posteriori
probabilities p(s.|zf,,e) and p(sy|y;, . €). Cus,,sc and Cy s, 5. are computed by cumulating the bands of the
corresponding histograms.
3) Results from¥(y,, s., s;,) modifications: To compare the results using P-MEMLIN and MEMHIN with those
based on MEMLIN, the experiments described in Section Ill were repeated.
P-MEMLIN and MEMHIN provide significant improvement over MEMLIN when few Gaussians are considered
(33.8%% of MIMP for MEMLIN with 4 Gaussians per basic environment and 3%1and 37.8% of MIMP
for PMEMLIN and MEMHIN); however, if the algorithms are evaluated using more than 8 Gaussians per basic
environment, the mean results are very similar among the three methods. That performance results from the
compensation of the variance of the feature vectors, which is more important when the number of Gaussians used for
representing the space is reduced. As the number of Gaussians decrease, the space data modelled by each Gaussial
increase and the transformation is more affected by the variance deviation between clean and noisy space. In those
situations, a more complex model of (¥ (y:, s, sy)) produces significant improvements. Although the methods
behave similarly when there are more than 8 Gaussians, we carried out experiments using controlled additive noise
[18], which demonstrated important improvements by using MEMHIN compared to MEMLIN. MEMHIN is better
able to compensate for the modifications of the variance in feature vectors caused by additive noise. To confirm
that, additive car noise was added to clean signals of the Spanish SpeechDat Car database. Table IV shows some
of the results from MEMLIN and MEMHIN with additive car noise of 5 dB of SNR, and clean and noisy GMM
of 8, 16, and 32 Gaussians to model the clean and the basic environments.
TABLE IV
MEeEAN WER (MWER)AND MEAN IMPROVEMENT IN WER (MIMP) IN % FORMEMLIN AND MEMHIN FOR8, 16 AND

32 GAUSSIANS PER BASIC ENVIRONMENT WITH5 DB SNRADDITIVE NOISE.

MWER (%) MIMP (%)
MEMLIN 8-8 8.15 25.52
MEMLIN 16-16 7.71 30.01
MEMLIN 32-32 7.06 36.63
MEMHIN 8-8 6.93 37.92
MEMHIN 16-16 6.55 41.88
MEMHIN 32-32 6.37 43.64

B. Phoneme-based transformations

1) Phoneme-Dependent MEMLIN, PD-MEMLIND obtain a more specific set of transformations, trying to
reduce the uncertainty between the normalized feature vectors and the acoustic models, we developed Phoneme-
Dependent MEMLIN (PD-MEMLIN). In PD-MEMLIN, noisy space is divided into a combination of basic acoustic
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environments as MEMLIN and each one is split into phonemes, which are modelled as a GMM. The clean space
is also divided in phonemes and each one of them is modelled as a GMM. Therefore, a bias vector transformation
is associated with each pair of Gaussians from the same phoneme of the clean and noisy basic environment spaces.
e PD-MEMLIN approximationsin PD-MEMLIN, three approximations are considered:
First approximation: noisy space is split into several basic environment$)e noisy feature vectors associated

with the different phonemegh, of each basic environment are modelled as a GMM

Pepn(ye) = Y p(yelsyP)p(sy™"), (30)

e,ph

Sy

Pyelsy™) = N (Y fryemn, Byen), (31)

where s;vPh denotes the Gaussian that corresponds to phongmend basic environment; p c.pn, X cpn, and
Y Y
p(sg’ph) are the mean vector, the diagonal covariance matrix, and the a priori probability associateg’ﬁﬁ/ith

Second approximation: the clean feature vectors of each phoneme are modelled as a GMM

pen(x) = p(|st")p(sB"), (32)

ph
b

p(x|sth) = N (x; fgon, B gon), (33)

wheres?" denotes the Gaussian that corresponds to phoméme ., ¥ on, andp(sk") are the mean, the diagonal
covariance matrix, and the a priori probability associated with

Third approximation: PD-MEMLIN assumes that a clean feature vector can be approximated by a linear function
that depends on the basic environment and the phoneme-dependent Gaussians of the clean and noisy models:
x ~ U(y;, sB, sg,ph) = Yr =T ph gerhy wherersg;b,sz,ph is a bias vector transformation between the clean and noisy
feature vectors of each pair of Gaussians of the same phonéfand s¢?".

e PD-MEMLIN enhancementiith those approximations, PD-MEMLIN transforms (2) into

:it =Yt — Z Z Z Z ngh’szyphp(dyt)p(ph‘yt7 e)p(sz)ph|yta e)ph)p(sgh‘yt’ e7ph) 82)7 (34)

e ph gorh goh

wherep(ely;) is the a posteriori probability of the basic environmen(iphly:, e) is the a posteriori probability of
the phoneme, given the noisy feature vecigr,and the basic environment; p(sjphlyt, e,ph) is the a posteriori
probability of the phoneme-dependent Gaussian of the noisy rmjp‘”é‘i given the noisy feature vectay;, the basic
environmentge, and the phonemeh. Finally, p(s2"|y;, e, ph, sg’Ph) is the cross-probability between the phoneme-
dependent Gaussians of the clean and noisy models, given the noisy feature yedta, basic environmeng,
and the phonemeyh. That term and the bias vector transformatit)sgh’s;‘ph, are estimated using stereo data in
the training phase.

The a posteriori probability of the basic environmen(k|y:), is computed iteratively by applying (30) and (31)

as the same way as (14) considering all the phonemes.



17

The a posteriori probability of the phonemeg, given the noisy feature vectay;, and the basic environmer,

p(phly:, ), can be computed using (30), and (31)

Pe,ph (Yt)
th Deph (Yt)
The a posteriori probability of the phoneme-dependent Gaussian of the noisy rsrgzi&elgiven the noisy feature

p(phly:,e) = (35)

vector, y;, the basic environmeng, and the phonemesh, p(s ”’h|yt,e ph), is computed using (30) and (31) as
the same way as (15) considering the different phonemes.
e PD-MEMLIN training: Using clean training feature vectors, a forced Viterbi segmentation in phonemes is used to

get a stereo data corpus for each basic environment and phddémeg, Y. ,») = {( TP YTT ) (P )

o (2 f}:h’y;ph )}7 with t. 1, € [1, T pp]. The bias vector transformatlonéghvsz,ph, is estimated by minimizing

the defined mean weighted square eregr; .c.»», With respect tor yn c.pn
T 0y

Sy ,sy’

»,ph ,ph , h ,ph
Ph sPh = Z ’Sph|xtepph7eaph)p( eph|yt e ph)(mt 5 ‘1'7“55&5;%)2’ (36)

e,ph
eph

ph ph :ph ,ph
Dot PSR e ph)p(sy Pt ly P e ph) (yh, — @yl

te,ph? te,ph’

e,ph te,ph
Togh sgwh = 0T min(§pn ewn) = = R — ; (37)
" gh 3ph " Zte,ph ( ‘xt;pph’ e7ph)p( v’ ‘yt;ﬁﬁﬂe’ph)
wherep(sph|xt;p’;,e ph) is the a posteriori probability of the phoneme-dependent Gaussian of the clean model,

sPh. given the clean feature vectore’ph

applying (32), (33)

the basic environment, and the phonemeyh. It can be computed by

e,ph ph sph
p(sph‘xt,pfz’ 7ph) p( epth ) ( )ph (38)
3 n p(ai”) |85 )p(s5")

The cross-probability between the phoneme-dependent Gaussians of the clean and noisy models, is simplified
by avoiding the time dependence given by the noisy feature vagtop(s?"|y:, e, SZ’ph,ph) ~ p(sthle, sy PR ph).

There are two ways to computgst”|e, s ’Ph,ph): using relative frequency (hard solution), which expression is

Cn (sB"[s"")

P55 [yes €, 557", ph) = p(s8"[s5™", €, ph) = ——
S;,ph

; (39)

whereCy (s5"[s%P") is the count number of times that the most probable pair of Gaussiaffs, iandsg?" for all

pairs of stereo training data efbasic environment angh phoneme, anost,ph is the count number of times that

the most probable Gaussian for noisy training feature vectwgﬂé for e basic environment angh phoneme.
Soft solution can be obtained using (30), (31), (32), and (33) as

,ph ph
S P [SE P (g |67 p(sE p(si )
3. h s h R h h , h .
Ete,phz ph p(xtepph|3z )p (ytf;h|syp )p(s’; )p(szp )

Since it is possible that some phonemes do not have associated enough data, all the experiments were carried

(5" Yo, €, ph, s5P") = p(s[syP" ) =

(40)

out applying the soft solution.
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2) Results from PD-MEMLINThe same experiments defined in Section Il were performed again, normalizing
the noisy feature vectors with PD-MEMLIN. Bias vector transformations were obtained for all the 25 Spanish
phonemes and the silence. Although only some of the phonemes would be necessary in this task, all of them were
included in the normalization process. Figure 4 presents the mean improvement in WERfilPD-MEMLIN
comparing to MEMLIN. To make a fair comparison between two methods, the results have been plotted as a

function of the number of Transformations per basic Environm&ptfy, which each method has to compute for
each frame in normalization, ilog,,

TpE = log;o(npnn pnnph), (41)

wheren ,» andn_» are the number of noisy and clean model Gaussiang/fophoneme, respectively, ang,,
is the number of phonemes,f, = 1, for MEMLIN). In this work, all of the phonemes have the same number of

clean and noisy model Gaussians per basic environment: 2, 4, 8, 16 or 32.

[er]
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o

Mean improvement, MIMP, in %.
N
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=

Fig. 4. Mean improvement in WER of MEMLIN and PD-MEMLIN.

The results show that PD-MEMLIN makes significant improvements relative to MEMLIN, specially when more
than four Gaussians per phoneme are usgdF( = 2.62). Figure 5 shows the histogram and scattegram of the
first MFCC coefficient in non-silence frames for clean and normalized data using PD-MEMLIN with 16 Gaussians
per basic environment for the E4 basic environment. From this figure, we can conclude that the transformations
proposed by PD-MEMLIN solve the problem of mapping the noisy feature vectors towards the clean silence as in
MEMLIN. PD-MEMLIN reduces the mapping space at the level of the phonemes, adapting in a better way the
bias vector transformations to the acoustic models.

To estimate the limit of the PD-MEMLIN approximation, a new experiment was performed. Each frame was
normalized using only the bias vector transformations of the “correct” phonp}negvhich is obtained using a
forced Viterbi segmentation in phonemes on the clean testing feature vectors. That pseudo-method is called Known
PD-MEMLIN (KPD-MEMLIN), and (34) is transformed into (42)
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Fig. 5. Scattegram and histogram between the first MFCC coefficient in non-silence frames for clean (x-axis) and normalized using PD-
MEMLIN with 16 Gaussians per phoneme (y-axis) signals from the E4 basic environment. The line in the scattergram represents the function
T =y.
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Fig. 6. Scattegram and histogram between the first MFCC coefficient in non-silence frames for clean signals (x-axis) and signals normalized

using KPD-MEMLIN with 16 Gaussians per phoneme (y-axis) from the E4 basic environment. The line in the scattergram represents the function

T =y.

Be=ye =Y D Y T eanD(elyn)p(syP" e, € p)p(sE" 1y, € ph ). (42)
e

e,ph _ph
Sy Sy
Table V shows the results for clean signal (CLK) and KPD-MEMLIN with 16 Gaussians per phoneme. The
scattegram and the histogram between the first MFCC coefficient in non-silence frames for clean and normalized

using KPD-MEMLIN with 16 Gaussians per phoneme are presented in Fig. 6.

TABLE V
MEAN WER (MWER)AND MEAN IMPROVEMENT IN WER (MIMP), IN % OF THE DIFFERENT BASIC ENVIRONMENTS FOR
THE CLEAN SIGNAL (CLK) AND NORMALIZED ONE WITH KNOWN PD-MEMLIN wWITH 16 GAUSSIANS PER BASIC

ENVIRONMENT.

El E2 E3 E4 ES E6 E7 | MWER %) MIMP (%)
CLK 0.38 206 140 0.50 0.57 0.160.00 0.86 -
KPD-MEMLIN 16-16 | 0.58 2.23 1.81 1.00 0.57 0.160.00 1.05 98.19




20

Table V and Fig. 6 indicate an improvement of almostZ0@hile the uncertainty between clean and normalized
feature vectors using KPD-MEMLIN is not reduced significantly. Therefore, the phoneme-dependent normalization
maps the noisy feature vectors inside the own uncertainty of the phonemes, which are modelled by the acoustic
models. This fact can be confirmed by computing the Mean Correct Phoneme (MCP) recognition rate. For this
purpose, the correct phoneme sequence is the one obtained by forced Viterbi segmentation over clean signal using
the clean acoustic models. For each normalized feature vector, the most probable phoneme is obtained using the
clean phoneme-dependent GMMs. The MCP rate is computed as the rate of correct phonemes over all the testing
utterances. Table VI shows the MCP rates for PD-MEMLIN and KPD-MEMLIN with 16 Gaussians per phoneme
and for all of the basic environments. KPD-MEMLIN matches the frames with the correct phoneme much better
than does PD-MEMLIN, increasing the average MCP more th&h. 10

TABLE VI
MEAN CORRECTPHONEME (MCP) RECOGNITION RATE IN% FOR NORMALIZED NON-SILENCE SIGNALS USING
PD-MEMLIN AND KNOWN PD-MEMLIN WITH 16 GAUSSIANS PER PHONEME IN EACH OF THE SEVEN BASIC

ENVIRONMENTS.

MCP (%) El E2 E3 E4 E5 E6 E7 Mean

PD-MEMLIN 16-16 32.64 3123 30.38 3254 3204 34.1481.21| 32.03

KPD-MEMLIN 16-16 | 37.68 40.15 39.87 43.06 45.15 48.350.28| 42.42

From Tables V and VI, we conclude that the proposed transformations associated to the different phonemes
are consistent, because the feature vectors are mapped from the noisy space to the space associated to the forced
clean phonemes. Therefore, it provides a future line of research which consists on estimating in a better way
the a posteriori probability of the phonems, given the noisy feature vectoy,, and the basic environmert,
p(phlyte).

3) “Blind” PD-MEMLIN: In many cases, stereo data are not available; therefore, an iterative “blind” training
procedure is needed. As PD-MEMLIN results are better than any other considered feature vector normalization
method, we propose a “blind” training procedure for PD-MEMLIN. The expressions for MEMLIN can be obtained
directly from the “blind” PD-MEMLIN ones.

Let us assume that the noisy training feature vectors and the phoneme-dependent clean and noisy GMMs are
available. So, the problem is to estimate the cross-probability between the phoneme-dependent Gaussians of the

clean and noisy modelg(s2"|s5?", e, ph), and the bias vector transformatior, ....», without the clean part
T 0y

S
of the training stereo data. The proposed iterative “blind” training procedure consists of an initialization and an
iterative process.

In the initialization, po (s2"|s5*", e, ph) and To et genn Are obtainedpy(s£"[s&P" e, ph) is estimated using a
modified Kullback Liebler distance [24], which gives a similarity measure?6fand s;’l’h without considering the

effects of the noise. For initialization purposes, we assume that the noise modifies mainly the mean vectors of the
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Gaussian models. So, the similarity between Gaussians is computed in terms of the a priori probabilities and the
diagonal covariance matrices of the corresponding Gaussians. Thus, given the phoneme-dependent Gaussians of the
clean and noisy modelsevph and s2”, the modified Kullback Liebler distancéy 1, (s;, eph gph) can be computed

as follows

, p(sg?h) B on (4,9) Esz,ph(z’,z’) | p(sSPh)
dia (o 58) =5 D ool S ) Sy TR D 69

whereX . (i,4) is and ¥ ...« (i,7) are thei’" term of the diagonal covariance matrices of #§& and thesg’l’h
x Y
Gaussians.
The modified Kullback Liebler distance is hot symmetric and it is not proportional to the likelihood; therefore,

a pseudo-likelihoodpl 1, (s&*", s8), is defined

1
leL( e ph Sph) (44)
dKL(Sy’ph ph) +dk (sw 73y’ph)
Finally, po(st"|s&P", e, ph) is estimated as
leL( &ph Sph)
po(s5"[sy" e, ph) = cph _ph (45)
> ph Plycr(sy™", sh )
On the other hanob;0 PR geoph is obtained replacing,..,» with p_,n in (37)
TN o 4
,ph|, €Pph ,ph
o Dt PO PR, — ) (46)
0,885y P T ,ph|, e,ph ’
s Sy Zte,ph ( v |ytppph7e7ph)

A very simple recognition experiment with phoneme acoustic models was carried out, normalizing the noisy signal
with po(s2""|sP" e, ph) andr, o ..~ and four Gaussians per phoneme-dependent GMM. The mean improvement
sh sy
in WER over the seven basic environments was Z0.2

.pn Can be estimated iteratively by the EM [25] algorithm in a similar way

7Sy

Oncero,sgh’sz,ph is computed T goh

as [7] (see appendix I). In this case, the corresponding expression f@f’thteration,rn gh gern, With n >0, is

:ph :ph ,ph
St Py YR e ph)p(sBh lye ), spP" o m — 1) (yg ") — pgen)

T 2}17 e,ph = R —h — — ’ (47)
n,85 ,Sy Zte, ( €,p ‘ytepph , e,ph) ( ‘ytepph e,p ,n— 1)
N (y te,phs Hgph +r ph _e.ph, E eph )p(sevph)
p(s ph|yt;IZ;,SZ’ph,n —-1)= i n—ls. sy Yy (48)

Zs';" N (Yto s Hgph =+ Tn—1,s20 0P Esg-ﬂ )p(sy’ph)

The same simple recognition experiment with phoneme acoustic models was performed, normalizing the noisy
signal with po(s§h|5§’ph,e,ph) and T sth soh and four Gaussians per phoneme-dependent GMM. The mean
improvement in WER in this case was 4103 n = 1, and 46.9% if n = 10.

To improve the estimation qﬁo(sgh\sgyph,e,ph), pseudo-stereo data are obtained normalizing the noisy training
feature vectors with KPD-MEMLIN. In this case, the phoneme associated with each noisy training feature vector,

ph, is estimated using a forced Viterbi segmentation of noisy training utterances. With the pseudo-stereo data,
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(Xephs Yepn) = {@TP" 0 PM); s (BEP0 4020 ) s (B2P7 Ly )}, where:f:té’,ih is the normalized feature vector
of yte;f;h, a new iteration fom(sgh\sgmh,e,ph) can be estimated using (39), or (40).

Useing one iteration of the EM algorithm to estimats%h,s;,ph and another one to compmegihp;,ph, e, ph) with
pseudo-stereo data, the mean improvement in WER with phoneme acoustic models and four Gaussians per phoneme-
dependent GMM was 50.23 As the use of pseudo-stereo data produces significant improvements, they can also
be used to adjust the estimation7osfz,h7sz,ph using (37). So, ifp(sgh|s‘;)20h7 e,ph) is estimated with three iterations
and the first iteration oﬁsgﬂ .o with the EM algorithm,r1’55h7 ephy is tuned with two additionally iterations

S S

with pseudo-stereo data, the mean improvement in WER with phoneme acoustic models and four Gaussians per
phoneme-dependent GMM was 58%8These results show that the use of the EM algorithm and the pseudo-stereo
data jointly produces important improvements. “Blind” MEMLIN training procedure can be developed in the same
way as PD-MEMLIN, avoiding the phoneme dependence.

4) Results from “blind” PD-MEMLIN: The experiments in Section Il were performed again, using “blind”
PD-MEMLIN. The mean improvement in WER it of “blind” PD-MEMLIN compared to PD-MEMLIN and
MEMLIN is presented in Fig. 7. Three iterations with pseudo-stereo data were nee@ﬁdg’dsgvl’h,e,ph), and
Tgph gepn WAS estimated with two iterations with pseudo-stereo data, OIGe c.pn had been computed with the
EM algorithm.
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Mean improvement, MIMP, in %.

-=- PD-MEMLIN
20 ¢ Blind PD-MEMLIN

1 15 2 25 3 35 4 4.5
Number of transformations per environment, in log, TpE.

Fig. 7. Mean improvement in WER of MEMLIN, PD-MEMLIN and “blind” PD-MEMLIN.

The results show that “blind” PD-MEMLIN is able to produces improvements that are very similar to MEMLIN
ones for all TpE.

The most representative results from each of the improvement methods over MEMLIN are summarized in Table
VII, indicating the TpE required to obtain the best corresponding values. It can be observed that PD-MEMLIN

obtains the best improvement with the smallest TpE.

V. DISCUSSION AND CONCLUSION

In this work, some basic methods of feature vector normalization based on MMSE estimator and stereo data, such

as RATZ, SPLICE, and our proposed technigue MEMLIN, have been explained and compared using real car noise
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TABLE VII
BESTMEAN WER (MWER) AND MEAN IMPROVEMENT IN WER (MIMP) IN % FROM MEMLIN, MEMHIN, P-MEMLIN,

PD-MEMLIN AND “BLIND” PD-MEMLIN, WITH THE REQUIRED TPE INDICATED.

TpE MWER %) MIMP (%)
MEMLIN 4.21 4.16 69.09
MEMHIN 421 4.26 68.09
P-MEMLIN 4.21 4.14 69.24
PD-MEMLIN 3.82 3.60 74.32
“Blind” PD-MEMLIN | 4.42 4.07 69.88
TABLE VIl

MEAN WER (MWER) AND MEAN IMPROVEMENT IN WER (MIMP) IN % FROM THE METHODSMEMLIN, MEMHIN,
PD-MEMLIN, AND “BLIND” PD-MEMLIN wITH ML-ADAPTED ACOUSTIC MODELS TO THE NORMALIZED SPACE THE

NUMBER OF GAUSSIANS PER BASIC ENVIRONMENT ARE INDICATED BESIDE THE NAME OF EACH NORMALIZATION METHOD

MWER (%) MIMP (%)

CLK 0.86 -

HF 3.95 71.05
t HF 2.82 81.59
MEMLIN 128-128 +ML 3.70 73.33
MEMHIN 128-128 +ML 3.40 76.15
PD-MEMLIN 32-32 + ML 3.09 79.10
“Blind” PD-MEMLIN 32-32 + ML 2.72 82.55

conditions from the SpeechDat Car database. With respect to RATZ and SPLICE, MEMLIN proposes modelling
clean and noisy spaces with GMMs, learning a bias vector transformation for each pair of Gaussians (one for the
clean GMM and the other one for the noisy GMM). MEMLIN produces results that are significantly better than
those obtained using other methods. MEMLIN produces a mean improvement in WER ofi6%a0%way from

48.82%% of Interpolated RATZ and better than 64%6f SPLICE with environmental model selection.

Further improvements have been considered using first order polynomial and a non-linear function for each pair
of Gaussians instead of the bias vector transformation in MEMLIN. The new methods are called P-MEMLIN and
MEMHIN, respectively. Both methods compensate for the effects of the noise in the mean and the variance of the
feature vectors. The results show an improvement concerning MEMLIN when less number of Gaussians is used.
When the number of Gaussians increases, the improvements in WER are very similaf(680%9.24; for
MEMHIN and P-MEMLIN with 128 Gaussians, respectively).

MEMLIN, P-MEMLIN and MEMHIN allow mapping from any noisy GMM Gaussian towards any clean GMM
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Fig. 8. Scattegram and histogram between the first MFCC coefficient in non-silence frames for clean (x-axis) and normalized using MEMLIN
with 128 Gaussians per basic environment, whee: |s,, e) is computed with clean signal agsz|x+). The line in the scattergram represents

the functionz = y.

Gaussian. PD-MEMLIN has been developed to constrain the mapping space in terms of the acoustic models. So,
noisy and clean spaces are split into phonemes and the transformations are only possible between Gaussians of
the same phoneme. The improvement in WER of PD-MEMLIN is 74.32s in many cases stereo data are

not available, a “blind” training procedure has been developed to estimate the needed variables for PD-MEMLIN
without the clean part of the stereo data. The improvement in WER in this case reachées,68t86h is even

better than MEMLIN. Furthermore, It can be observed that a perfect estimation of the a posteriori probability of
the phoneme, given the noisy feature vector and the basic environment, in PD-MEMLIN (KPD-MEMLIN) can
generate almost a 100of improvement in WER, while the uncertainty between the clean feature vectors and the
normalized ones is not reduced significantly.

Although the transformation is not perfect, the normalized feature vectors define a new normalized space more
homogeneous than the noisy one. So, new acoustic models can be retrained with the normalized training data.
The MWER and MIMP results are presented in Table VIII. It can be observed that the results for all techniques
are better than the ones obtained with noisy acoustic models, HF, and in some cases very similar to use specific
acoustic models for each environmehtHF.

In all the presented techniques, the estimation of the cross-probability modelpigtiy:, e, s,), in MEMLIN,
P-MEMLIN and MEMHIN, andp(s?"|y;, e, sjph), in PD-MEMLIN, has a hugh impact on the final performance. A
simple experiment approximating the cross-probability model using the clean feature vectors gives an improvement
in WER close to 10%, and reducing dramatically the uncertainty between the clean feature vectors and the
normalized ones, as shown in the Fig. 8. These results open a new line of future work, improving the estimation
of the cross-probability model and the a priori probability of the phoneme, given the noisy feature vector and the

basic environment.
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APPENDIX |

ESTIMATION OF T ph e.ph BY THE EM ALGORITHM FOR “BLIND” PD-MEMLIN.
2 sy

We consider a set of noisy labeled feature vectors associated to a basic envirenraadta phonemeph,
yrh = {yorh ’yt;i}; ,yT’ph }, with te ,, € [1,Te ). Noisy and clean feature vectors are modelled with

GMMs: (30) (31), (32) and (33). We assume that the pdf of the noisy feature vectors,sgivesjph, the e basic
environment and theh phoneme is

p(yt;’::fI \sr , sy’ph, e,ph) = N(yt;};};  Hgph + Tgph ol Esz,ph). (A1)
The log-likelihood function,L(Y?") is
L(YPh) = ZlogZZp sph,s;’ph\e,ph) (yte oot Hgpn T e ns b 5 k), (A.2)

te,ph f‘ph 5P

wherep(sb", syvph\e ph) is the joint probability of the pair of Gaussians, given the basic environnaemind the
phonemeph. The auxiliary functionQ(¢, ¢ne.)2", with ¢ = {r, Ph o »n } is defined as

QB bnew)? = DD (B, S yp ™ L ¢, e, ph)log(p(yp ™, sE, ST (fnews €,ph)),  (A3)

tePhse phsph

Defining Q2 = yt ”’h — fhgph — »h eph, (A.3) is transformed into

T new Sz 1Sy

1 1
Q(¢, Prew)E" = constant + Z Z Zp (sP" s y’ph|yte’i’z,¢,e,ph)(—§log|§]s;,ph| - §QTESZ,MQ). (A.4)

te PhsS iPh gph

The value ofrnew sPh gevh is obtained by taking derivatives and setting it equal to zero

78

(Q(¢ ¢new Zp Sph

,ph ,ph
T pew,st* soPh = (5(7‘ o) P ’Sy,ph|yt D s e, ph) T e ph( Y = Hgph = Tpew o2t 50 on) = 0.
new,Ssy, S e ph
(A.5)
, h
Zte,ph, p(3€h7 Sy’phlytE pha¢a € ph)( 2P — My Ph)

new sgh,sz PR = ph _e,ph| e,ph ’ (A6)

Zte hp(Sz ,Sy |yte ph7¢7 aph)

wherep(sk, s¢ *ph|yt6’pph,¢, e,ph) can be computed as follows
,ph , ,ph ,ph ,
p(szm)h7syyph|ytcpph7¢7e7ph> = ( ph|yt6pph7e7ph) (Sph|ytepph7 yph7¢7e ph‘) (A7)
ph eph | gph ge,ph
, oh p(syP)p(ye”), 1SR, 557", )

p(s§h7 th|yt ph7¢7e ph) ( Y ph|yteih7eaph) ! - y (A8)

ph ph Ph N
Z Php(syp )P(yteih|3w ,syp ;)
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