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Abstract

In this work, a set of feature vector normalization methods based on the MMSE criterion and stereo data is

presented. They include Multi-Environment Model-based LInear Normalization (MEMLIN), Polynomial MEMLIN

(P-MEMLIN), Multi-Environment Model-based HIstogram Normalization (MEMHIN), and Phoneme Dependent

MEMLIN (PD-MEMLIN). Those methods model clean and noisy feature vector spaces using Gaussian Mixture

Models (GMMs). The objective of the methods is to learn a transformation between clean and noisy feature vectors

associated with each pair of clean and noisy model Gaussians. The direct approach to learn the transformation

is by using stereo data; that is, noisy feature vectors and the corresponding clean feature vectors. In this work,

however, a non-stereo data based training procedure, is presented. The transformations can be modelled just like a

bias vector (MEMLIN), or by using a first order polynomial (P-MEMLIN) or a non-linear function based on histogram

equalization (MEMHIN). Further improvements are obtained by using phoneme-dependent bias vector transformation

(PD-MEMLIN). In PD-MEMLIN, the clean and noisy feature vector spaces are split into several phonemes, and each

of them is modelled as a GMM. Those methods achieve significant word error rate improvements over others that are

based on similar targets. The experimental results using the SpeechDat Car database show an average improvement

in word error rate greater than 68% in all cases compared to the baseline when using the original clean acoustic

models, and up to 83% when training acoustic models on the new normalized feature space.

Index Terms

Feature vector normalization, Minimum Mean Square Error, robust speech recognition, Gaussian mixture models.

I. I NTRODUCTION

When training and testing acoustic conditions differ, the accuracy of speech recognition systems rapidly degrades.

To compensate for the effects of additive and convolutional noises, which are the main cause of the mismatch

between training and recognition spaces, robustness techniques have been developed along the following two main

lines of research:

• Acoustic model adaptation methods, which map acoustic models from training space to recognition space.
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• Feature vector adaptation/normalization methods, which map recognition space feature vectors to the training

space.

Some of the techniques can be combined to generate hybrid solutions, which are effective under certain conditions

[1], [2]. The choice of a robustness technique depends on the characteristics of the application in each situation.

In general, acoustic model adaptation methods produce the best results [3] because they can model the uncertainty

caused by the noise statistics. Well-known successful acoustic model adaptation methods include Maximum A

Posteriori (MAP) [4], Maximum Likelihood Linear Regression (MLLR) [5], Parallel Model Combination (PMC)

[6], and Vector Taylor Series (VTS) [7]. However these methods require more data and computing time than do

feature vector adaptation/normalization methods.

Feature vector adaptation/normalization methods fall into one of three main classes [8]: high-pass filtering, model-

based techniques, and empirical compensation.

High-pass filtering contains methods such as Cepstral Mean Normalization (CMN) [9], [10] and RelAtive SpecTral

Amplitude (RASTA) processing, [11]. Although the results produced by those methods are limited individually,

some of them, particularly CMN, are included in almost every speech recognition systems because they use simple

and effective procedures.

Model-based methods assume that a mismatch between training and recognition spaces can be represented by a

structural model of environmental degradation. The parameters of the structural model are estimated and applied to

the appropriate inverse operation to compensate the recognition signal. Examples of model-based methods are Vector

Taylor Series for normalization (VTS) [7], Codeword Dependent Cepstral Normalization (CDCN) [12], Minimum

Mean Square Error Log Spectral Amplitude estimator (MMSE-LSA) [13], and Spectral Subtraction (SS) [14].

Empirical compensation methods that use direct cepstral comparisons are entirely data driven. Typically, they

require stereo data but sometimes “blind” approaches are used [7]. Empirical compensation methods need a training

phase where some transformations are estimated by computing the frame-by-frame differences between the vectors

representing speech in the clean and noisy environments (stereo data). Algorithms used in that approach include

multivariate Gaussian-based cepstral normalization (RATZ) [7], Stereo-based Piecewise Linear Compensation for

Environments (SPLICE) [15], and Probabilistic Optimum Filtering (POF) [16].

Independently of the feature vector normalization method, several algorithms assume a prior probability density

function (pdf) for the estimation variable. In those cases, a Bayesian estimator can be used to estimate the clean

feature vector. The most commonly used criterion is to minimize the Mean Square Error (MSE), and the optimal

estimator for this criterion, Minimum Mean Square Error (MMSE), is the mean of the posterior pdf. Many different

methods, such as CDCN, VTS, RATZ, and SPLICE use the MMSE estimator to compute the estimated clean feature

vector.

This work focuses on empirical feature vector normalization based on stereo data and the MMSE estimator.

Some methods, such as VTS, CDCN, POF, and RATZ, assume that the clean feature space can be modelled using a

Gaussian Mixture Model (GMM). However, although the uncertainty between clean and normalized feature vectors

is reduced, a mismatch is generated in the estimation of the a posteriori probability of the clean model Gaussian,
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given the noisy feature vector [7] in the normalization. To avoid the problem and maintaining the uncertainty

improvement, some other algorithms, e.g., SPLICE, model the noisy space using a GMM. In general, noisy space

modelling produces better results than does clean space modelling; however, both modelling methods still have

high uncertainty when learning transformations because they model only the clean or the noisy space.

To improve the results obtained using state-of-the-art empirical feature normalization methods, we propose several

solutions based on the joint modelling of clean and noisy space. We present Multi-Environment Model-based LInear

Normalization (MEMLIN) [17], which splits noisy space into several basic environments and models each basic

noisy and clean feature spaces using GMMs.

Most empirical feature vector normalization methods compute a bias vector transformation for each clean model

Gaussian, e.g., RATZ, each noisy model Gaussian, e.g., SPLICE, or each pair of clean and noisy model Gaussians,

e.g., MEMLIN. In this work, we propose several approximations to modify the simple bias correction term

used in MEMLIN. A first-order polynomial transformation, Polynomial Multi-Environment Model-based LInear

Normalization (P-MEMLIN) addresses the use of a different slope and bias term for each pair of clean and

noisy model Gaussians. A non-linear transformation, Multi-Environment Model-based HIstogram Normalization

(MEMHIN) [18] addresses the use of a histogram equalization for each pair of clean and noisy model Gaussians.

Those two new methods can compensate for the effects of the noise over the means and the variance of the feature

vectors.

To reduce the uncertainty between the new normalized feature vectors and the acoustic models, we propose

a Phoneme-Dependent Multi-Environment Model-based LInear Normalization (PD-MEMLIN) [19] in which the

clean and noisy spaces are split into phonemes that are modelled using GMMs. The bias vector transformation is

defined for the pair of clean and noisy model Gaussians of each phoneme.

In many acoustic environments and training databases, stereo data are unavailable. To overcome the limitation

of the need for stereo data, a non-stereo data training algorithm that uses only noisy feature vectors is proposed.

That “blind” technique is applied over the PD-MEMLIN method, [20].

Although these new methods attempt to map the noisy feature vectors to the clean space, the transformation is

not perfect; therefore, there remains a mismatch between clean space and the new normalized space. To compensate

for that mismatch, we propose to adapt the acoustic models to the new normalized space.

To compare the performance of the proposed methods in a real and dynamic environment, experiments were

carried out using the Spanish SpeechDat Car database [21]. Car noise characteristics depend on driving conditions

[9], [22] and the Lombard [23] effect can be important; consequently, speech recognition in cars is a difficult task

that can generate valid results with which to compare the different techniques.

This paper is organized as follows: In Section II, the noise effects and the basic MMSE-based feature vector

normalization methods are detailed. In Section III, the Spanish SpeechDat Car database and the results from

the different state-of-the-art MMSE-based feature vector normalization techniques, CMN, RATZ, SPLICE, and

MEMLIN are explained. In Section IV, P-MEMLIN, MEMHIN, PD-MEMLIN and “blind” PD-MEMLIN are

described, and the results of these methods are presented. Finally, a discussion and the conclusions are presented
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in Section V.

II. N OISE EFFECTS AND BASICMMSE-BASED FEATURE VECTOR NORMALIZATION METHODS

We assume a general, simplified approximation of speech signal degradation based on additive noise and convo-

lutional noise [12]. In this case, the noisy signal in the Mel Frequency Cepstral Coefficient (MFCC) domain,yt,

can be modelled as

yt = xt + f(xt, nt, ht), (1)

where t is the time frame index,xt is the clean MFCC vector,nt is the additive noise MFCC vector, andht is

the corresponding convolutional noise MFCC vector. The random nature of the additive and convolutional noises

results in one to many mapping between clean and noisy feature spaces: a given clean feature vector can generate

different noisy feature vectors, and vice versa, which creates an uncertainty.

Figure 1 shows the scattergrams and histograms for the first MFCC coefficient in non-silence frames for clean

and noisy feature vectors from different degradation conditions. Note that the uncertainty between clean and noisy

coefficients always exists, even when controlled convolutional noise only is considered (Fig. 1.a). The convolutional

noise mainly shifts the mean of the coefficients, whereas additive noise (Fig. 1.b) modifies the pdf, reducing the

variance of the coefficients. In the same way, the real car environment (Fig. 1.c) modifies the mean and variance,

jointly.

To compensate for noise effects, there are several kinds of feature vector normalization methods (Section I), but

we focus on empirical methods based on the MMSE criterion. Therefore, given the noisy feature vector,yt, the

estimated clean feature vector,x̂t, is obtained by using the MMSE criterion as

x̂t = E[x|yt] =
∫

X

x p(x|yt)dx, (2)

wherex is the clean feature vector, andp(x|yt) is the pdf ofx given yt. The wayp(x|yt) andx are approximated

determines the different MMSE-based feature vector normalization methods.

A. Basic MMSE-based feature vector normalization methods

There are mainly three basic feature vector normalization methods based on the MMSE criterion that have been

used extensively: CMN, which is a very simple method, RATZ [7], and SPLICE [15]. In the CMN method, no

assumptions are made in estimatingp(x|yt), and the clean feature vector,x, is approximated asx ≈ Ψ(yt, r) = yt−r,

wherer is a bias vector transformation betweenyt andx. With that approximation, for CMN, (2) becomes to

x̂t =

∫

X

(yt − r)p(x|yt)dx = yt − r. (3)

To estimate the bias vector transformation,r, the mean square error,ξ, is defined and minimized with respect to

r
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Fig. 1. Scattergrams and histograms for the first MFCC coefficient in non-silence frames between clean (x-axis) and contaminated (y-axis)

in several degraded conditions: (a) controlled convolutional noise when the filter response is longer than the Hamming window used in the

computing of MFCC, (b) additive car noise with 0dB SNR, and (c) real car condition. The line in the scattergrams represents the function

x = y.

r = arg min
r
(ξ) = arg min

r
(E[(x̂t − xt)

2]) = E[yt]− E[xt], (4)

whereE[•] is the corresponding mean. In some cases, the mean of the clean feature vectors is removed before

training the acoustic models and, then, the bias vector transformation for CMN is computed asr = E[yt]. Actually,

the basic CMN algorithm, or an extension of it, is considered a standard and it is used in almost every speech

recognition systems because of the low computing time and satisfactory results.

To improve the CMN approximation, RATZ makes two assumptions. The first assumption consists of modelling

the clean space using a GMM
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p(x) =
∑

sx

p(x|sx)p(sx), (5)

p(x|sx) = N (x;μsx ,Σsx), (6)

whereμsx , Σsx , andp(sx) are the mean, the diagonal covariance matrix, and the a priori probability associated

with the clean model Gaussiansx. The second assumption for RATZ is to approximate the clean feature vector as

x ≈ Ψ(yt, rsx) = yt − rsx , wherersx is a bias vector transformation betweenyt andx for the the clean model

Gaussian,sx. The estimation ofrsx is included in [7]. With the two assumptions, RATZ makes (2) become

x̂t ≈
∫

X

∑

sx

(yt − rsx)p(x, sx|yt)dx = yt −
∑

sx

rsxp(sx|yt), (7)

wherep(sx|yt) is the a posteriori probability of the clean model Gaussiansx, given the noisy feature vectoryt,

and it can be computed using (5), and (6) assuming an additive effect of the noise in the MFCC domain [7].

Although RATZ can improve the performance concerning CMN because it models better the clean space, in the

normalization, the estimation ofp(sx|yt) can produce a mismatch. To avoid it, SPLICE proposes to model the noisy

space instead of the clean one using GMM

p(yt) =
∑

sy

p(yt|sy)p(sy), (8)

p(yt|sy) = N (yt;μsy ,Σsy ), (9)

wheresy denotes the corresponding Gaussian of the noisy model,μsy , Σsy , andp(sy) are the mean vector, the

diagonal covariance matrix, and the a priori probability associated withsy. At the same time, the clean feature

vector,x, is approximated asx ≈ Ψ(yt, rsy ) = yt − rsy , wherersy is a bias vector transformation betweenyt and

x for the noisy model Gaussian,sy. The estimation ofrsy is evaluated in [15]. Therefore, SPLICE transforms (2)

into

x̂t ≈
∫

X

∑

sy

(yt − rsy )p(x, sy|yt)dx = yt −
∑

sy

rsyp(sy|yt), (10)

wherep(sy|yt) is the a posteriori probability of the noisy model Gaussian,sy, given the noisy feature vector,yt,

computed using (8), and (9).

The bias vector transformations of RATZ and SPLICE depend on the environment. So, to consider several acoustic

conditions, RATZ and SPLICE multi-environment methods have been developed: Interpolated RATZ (IRATZ) [7]

and SPLICE with environmental model selection [15]. In those methods, noisy space is split into several basic

environments concerning similar acoustic properties (Signal-to-Noise Ratio, SNR, spectral shape...), and the bias

vector transformations are computed independently for each basic environment. The final resulting transformation

is computed as a weighted sum of all of the basic environment bias vector transformations (soft decision), or using

only the most probable basic environment bias vector transformations (hard decision).
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B. Multi-Environment Model-based LInear Normalization, MEMLIN

Multi-Environment Model-based LInear Normalization (MEMLIN) proposes a general MMSE-based framework

by providing a GMM modelling of the clean and noisy spaces. Noisy space is divided in a combination of basic

acoustic environments. Therefore, a bias vector transformation is associated with each pair of Gaussians from the

clean and the noisy basic environment spaces.

1) MEMLIN approximations:In MEMLIN, three approaches are used:

• Noisy space is divided into a combination of several basic environments,e, and the noisy feature vectors,yt,

are modelled as a GMM for each basic environment

pe(yt) =
∑

sey

p(yt|s
e
y)p(s

e
y), (11)

p(yt|s
e
y) = N (yt;μsey ,Σsey ), (12)

wheresey denotes the corresponding Gaussian of the noisy model for thee basic environment,μsey , Σsey , andp(sey)

are the mean vector, the diagonal covariance matrix, and the a priori probability associated withsey.

• Clean feature vectors are modelled using a GMM: expressions (5) and (6).

• Clean feature vectors can be approximated as a linear function of the noisy feature vector, which depends on

the basic environment and the clean and noisy model Gaussians:x ≈ Ψ(yt, sx, sey) = yt − rsx,sey , wherersx,sey is

a bias vector transformation between noisy and clean feature vectors for each pair of Gaussians,sx andsey.

2) MEMLIN enhancement:With those approximations, MEMLIN transforms (2) into

x̂t = yt−
∫

X

∑

e

∑

sey

∑

sx

rsx,seyp(x, sx, e, s
e
y|yt)dx = yt−

∑

e

∑

sey

∑

sx

rsx,seyp(e|yt)p(s
e
y|yt, e)p(sx|yt, e, s

e
y), (13)

wherep(e|yt) is the a posteriori probability of the basic environment;p(sey|yt, e) is the a posteriori probability of the

noisy model Gaussian,sey, given the feature vector,yt, and the basic environment,e. Those two terms are computed

for each frame applying (11) and (12). Finally, the cross-probability model,p(sx|yt, e, sey), is the probability of the

clean model Gaussian,sx, given the feature vector,yt, the basic environment,e, and the noisy model Gaussian,

sey. That term, along with the bias vector transformation,rsx,sey , is estimated in a training phase using stereo data.

The a posteriori probability of the basic environment,p(e|yt), is computed recursively by applying (11) and (12)

as

p(e|yt) = β ∙ p(e|yt−1) + (1− β)
pe(yt)∑
e pe(yt)

, (14)

whereβ is the memory constant (0 ≤ β ≤ 1), andp(e|y0) is considered to be uniformly distributed over all the

basic environments. Considering the defined acoustic environments,β has to be close to 1 due to the succession

of the basic environments along the time is not very fast. So, in this workβ has been set to 0.98. The a posteriori
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probability of the noisy model Gaussian, given the feature vector,yt, and the basic environment,e, p(sey|yt, e) can

be computed considering (11) and (12) as

p(sey|yt, e) =
p(yt|sey)p(s

e
y)∑

sey
p(yt|sey)p(sey)

. (15)

3) MEMLIN training: Given a stereo data corpus for each basic environment,(Xe, Ye) =
{
(xe1, y

e
1); ...; (x

e
te
, yete);

...; (xeTe , y
e
Te
)
}

, with te ∈ [1, Te], the bias vector transformation,rsx,sey , is estimated by minimizing the defined

mean weighted square error,ξsx,sey , with respect torsx,sey

ξsx,sey =
∑

te

p(sx|x
e
te
, e)p(sey|y

e
te
, e)(xete − y

e
te
+ rsx,sey )

2, (16)

rsx,sey = arg min
rsx,sey

(ξsx,sey ) =

∑
te
p(sx|xete , e)p(s

e
y|y
e
te
, e)(yete − x

e
te
)

∑
te
p(sx|xete , e)p(s

e
y|y
e
te
, e)

, (17)

wherep(sx|xete , e) is the a posteriori probability of the clean model Gaussian,sx, given the clean feature vector,

xete , and the basic environment,e. It can be estimated by applying (5), and (6)

p(sx|x
e
te
, e) =

p(xete |sx)p(sx)∑
sx
p(xete |sx)p(sx)

. (18)

The cross-probability model,p(sx|yt, e, sey), is simplified by avoiding the time dependence given by the noisy

feature vector,yt, (p(sx|yt, e, sey) ' p(sx|s
e
y, e)). The termp(sx|sey, e) can be estimated by using relative frequency,

a hard solution, or using (11), (12), (5), and (6), soft decision. Therefore, the corresponding expression for the hard

decision is

p(sx|s
e
y, e) =

CN (sx|sey)

Nsey
, (19)

whereCN (sx|sey) is the count number of times that the most probable pair of Gaussians issx andsey for all pairs

of stereo training data of thee basic environment, andNsey is the count number of times that the most probable

Gaussian for noisy training feature vectors issey for the e basic environment.

The estimation of the cross-probability model using the soft decision is

p(sx|s
e
y, e) =

∑
te
p(xte |sx)p(yte |s

e
y)p(sx)p(s

e
y)∑

te

∑
sx
p(xte |sx)p(yte |sey)p(sx)p(sey)

. (20)

When there are enough data to estimate the cross-probability model, both solutions, hard and soft, obtain similar

results: no significant changes in recognition were obtained in this case. However, when there are not enough data,

the soft option provides a more consistent solution. The hard solution was used in all the experiments carried out

with MEMLIN in this work.

In summary, MEMLIN associates a bias vector transformation to each pair of noisy and clean Gaussians. So,

comparing against RATZ or SPLICE, which define a bias vector transformation from a Gaussian to the whole
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noisy or clean space, the mapping space associated to each MEMLIN transformation is more enclosed, having

a less uncertainty region. Therefore, given an appropriate cross-probability model, the MEMLIN is expected to

outperform RATZ or SPLICE performances.

III. T HE SPEECHDAT CAR DATABASE AND RESULTS USING BASIC FEATURE VECTOR NORMALIZATION

MMSE-BASED METHODS

To compare the performance of the basic multi-environment MMSE-based feature vector normalization methods

(IRATZ, SPLICE with environment model selection, and MEMLIN) in a real, dynamic, and complex environment,

a set of experiments were performed using the Spanish SpeechDat Car database [21]. Seven basic environments

were defined as follows

E1: car stopped, motor running.

E2: town traffic, closed windows, and climatizer off (silent conditions).

E3: town traffic and noisy conditions (windows open, and/or climatizer on).

E4: low speed, rough road, and silent conditions.

E5: low speed, rough road, and noisy conditions.

E6: high speed, good road, and silent conditions.

E7: high speed, good road, and noisy conditions.

In this study, two channels of the database recorded simultaneously (stereo data) have been used: A clean signal

from a CLose talK channel (CLK), which was recorded using a Shure SM-10A microphone, and a noisy signal

from a Hands-Free channel (HF), which was recorded using a Peiker ME15/V520-1 microphone located on the

ceiling in front of the driver. HF signals are used in recognition tasks.

TABLE I

NUMBER OF UTTERANCES AND WORDS FOR TRAINING AND TESTING CORPORA USED IN ALL THE EXPERIMENTS.

E1 E2 E3 E4 E5 E6 E7 Total

# utterancestrain 3,393 3,122 2,356 2,106 2,550 2,038543 16,108

# utterancestest 199 223 136 152 200 120 56 1,086

# words train 10,542 9,652 7,160 6,517 7,908 6,2651,673 49,717

# words test 1,049 1,166 715 798 1,049 630 294 5,701

For speech recognition, the feature vector is composed of the 12 MFCCs, first and second derivatives and the

delta energy, giving a final feature vector of 37 coefficients computed every 10 ms using a 25 ms Hamming window.

On the other hand, in this work, the feature vector normalization methods are applied to the 12 MFCCs and log

energy, only, whereas the derivatives are computed over the normalized static coefficients.

The recognition task is isolated and continuous digits recognition. Word acoustic models are built from a set

of 674 left and right context-dependent and 25 context-independent units. Each unit is modelled by one-state
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continuous density HMMs with 16 Gaussians. In addition, two silence models for long and interword silences are

considered. Each phoneme is modelled by the left contextual unit, the incontextual unit and right contextual unit.

So, for example, the word acoustic model for Spanish digit “dos” (“two”) can be obtained by the concatenation of

the following units:/#< d/ /d/ /d > o/ /d < o/ /o/ /o > s/ /o < s/ /s/ /s > #/, where# is the silence

unit, / < / is the left context-dependent unit,// is the context-independent unit and finally/ > / is the right

context-dependent unit.

A training corpus for each basic environment is used for training acoustic models and learning the corresponding

bias vector transformations and the cross-probability models (16,108 utterances for all basic environments and

different tasks: isolated and continuous digits, spelling, dates, commands and names). The testing corpus is composed

of 1,086 utterances for all basic environments, and different speakers from the training corpus. The composition of

the training and testing corpora is explained in detail in Table I, where it is included the number of utterances and

words for each basic environment. No Voice Activity Detector (VAD) is applied in any case.

The Word Error Rate (WER) baseline results for each basic environment are presented in Table II, where MWER

is the Mean WER, which is computed proportionally to the number of words in each basic environment (see Table

I). The CMN method is applied to testing and training data. “Train” column refers to the signals used to obtain the

corresponding acoustic HMMs; if they are trained with all clean training utterances, the column is marked CLK,

and if the column is marked HF, the acoustic models are trained with all noisy training utterances. HF† indicates

that specific acoustic HMMs for each basic environment are applied in the recognition task (environment match

condition). “Test” column indicates which signals are using for recognition: clean, CLK, or noisy, HF.

TABLE II

WER BASELINE RESULTS, IN %, FROM THE DIFFERENT BASIC ENVIRONMENTS(E1,..., E7)WHEN CLEAN (CLK IN THE

TRAIN COLUMN) OR NOISY (HF IN THE TRAIN COLUMN) ACOUSTIC MODELS ARE APPLIED. HF† INDICATES THAT SPECIFIC

ACOUSTIC MODELS FOR EACH BASIC ENVIRONMENT ARE TRAINED. “T EST” REFERS TO THE RECOGNIZED DATA, EITHER AS

CLEAN (CLK) OR NOISY (HF).

Train Test E1 E2 E3 E4 E5 E6 E7 MWER (%)

CLK CLK 0.38 2.06 1.40 0.50 0.57 0.16 0.00 0.86

CLK HF 4.29 11.06 11.61 14.79 14.49 11.2720.07 11.52

HF HF 1.72 5.49 3.08 4.01 4.86 3.33 5.78 3.95

HF† HF 1.24 4.37 2.10 3.38 3.63 1.11 3.40 2.82

Table II shows the effect of real car conditions, which produces a significant increase in WER in all of the basic

environments, (Train CLK, Test HF), concerning the rates for clean signal, (Train CLK, Test CLK). When acoustic

models are retrained using all basic environments, (Train HF) MWER decreases considerably. Finally, the lowest

MWER when the noisy signal is used for recognition is obtained for environment match condition, (Train HF†):

2.82%.



11

0 20 40 60 80 100 120
30

40

50

60

70

80

Number of Gaussians per environment.
M

ea
n 

im
pr

ov
em

en
t, 

M
IM

P
, i

n 
%

.

IRATZ
SPLICE MS
MEMLIN

Fig. 2. Mean improvement in WER for Interpolated RATZ (IRATZ), SPLICE with environmental model selection (SPLICE MS) and MEMLIN.

Figure 2 shows the mean improvement in WER (MIMP) in% for each of the multi-environment basic feature

vector normalization methods based on MMSE (IRATZ, SPLICE with environmental model selection, SPLICE MS,

and MEMLIN). A 100% MIMP would be obtained when the MWER is the same as in clean conditions. So, given

a MWER, the corresponding MIMP will be

MIMP =
100(MWER−MWERCLK−HF )

MWERCLK−CLK −MWERCLK−HF
, (21)

whereMWERCLK−CLK is the mean WER obtained with clean conditions (0.86 in this case), andMWERCLK−HF

is the baseline (11.53). In order to compare all the methods, the MIMP has been depicted with respect to the

number of Gaussians per basic environment, because it gives an idea of the computing cost. The SPLICE MS

method always produces better results than does RATZ, which is because of the assumption of the noisy model

when the a posteriori probability of a clean model Gaussian, given the noisy feature vector is computed [7]. On

the other hand, the MEMLIN algorithm improves the results based on SPLICE MS for any number of Gaussians

per basic environment due to the projection space associated to a bias vector transformation in MEMLIN is smaller

than SPLICE MS or IRATZ, being the transformations more specific. To obtain more specific transformations in

MEMLIN, the number of them associated to a noisy or clean model Gaussian is higher than in SPLICE MS or

IRATZ, but the computing cost in the normalization process is almost the same.

Figure 3.a and Fig. 3.b show the comparative histograms and scattergrams between clean and noisy and normalized

first MFCC coefficients in non-silence frames from E4 basic environment. The normalized coefficients are obtained

using MEMLIN with 128 Gaussians per basic environment. Although all terms in SPLICE MS normalization

are obtained directly using the noisy GMM, the corresponding histograms and scattegrams are visually similar

to MEMLIN ones. However, MEMLIN histograms and scattegrams can be improved considerably if the cross-

probability model is estimated properly (it will be considered in the Section V). It can be observed that the

normalized signal histogram is close to the clean signal one, although there is still a considerable uncertainty

between clean and normalized coefficients (Fig. 3.b.2). The peak that appears in the normalized signal histogram
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Fig. 3. Scattegrams and histograms between the first MFCC coefficient in non-silence frames for clean (x-axis) and contaminated (a) or

normalized (b) using MEMLIN with 128 Gaussians per basic environment (y-axis) signals for the E4 basic environment. Also, the scattegram

and histogram when the transformations of MEMLIN with 128 Gaussians are computed only with non-silence frames are presented (c). The

line in the scattergrams represents the functionx = y.

(Fig. 3.b.1) is due to the transformation of noisy feature vectors towards the clean silence. This problem can be

solved if an efficient VAD were used in training and during the normalization. To confirm this, the noisy signals were

normalized with the transformations and the cross-probability models for MEMLIN with 128 Gaussians trained only

with the non-silence frames. Figure 3.c presents the scattegram and histogram between the first MFCC coefficients

in non-silence frames for clean and normalized with this new training condition signals. It can be observed that the

peak disappears.

The most representative results from each of the methods are summarized in Table III, indicating the number of

Gaussians per basic environment (] Gaussian) required to obtain the best corresponding values.
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TABLE III

BEST MEAN WER (MWER) AND MEAN IMPROVEMENT IN WER (MIMP) IN % FROM INTERPOLATEDRATZ, SPLICE

WITH ENVIRONMENTAL MODEL SELECTION, SPLICE MS,AND MEMLIN, WITH THE REQUIRED NUMBER OFGAUSSIANS

PER BASIC ENVIRONMENT INDICATED.

] Gaussian MWER (%) MIMP (%)

Interpolated RATZ 64 6.32 48.82

SPLICE-MS 128 4.65 64.46

MEMLIN 128 4.16 69.09

IV. I MPROVEMENTS OVERMEMLIN

There are two important approximations in MEMLIN expressions that can affect the final performance of the

method. One is the selection of the linear model forx associated with a pair of Gaussians that has an independent

term only (x ≈ Ψ(yt, sx, sey) = yt−rsx,sey ). That model compensates for the mean shift, but not for the modification

of the variance. The second approximation involves treating all of the sounds in the same way. So, there is always

a bias vector transformation which maps from a noisy model Gaussian to every clean model one and it can

produce, for example, that several non-silence noisy feature vectors are mapped towards the clean silence. To

overcome these approximations, we consider different solutions. To develop a more realistic model forx, we use a

modification ofΨ(yt, sx, sey) and define two novel multi-environment feature vector normalization methods based

on MMSE: Polynomial MEMLIN (P-MEMLIN), which uses a complete first order polynomial approximation, and

Multi-Environment Model-based HIstogram Normalization (MEMHIN), which assumes a non-linear model.

Although the MEMLIN algorithm achieves significant improvements over other basic MMSE-based feature vector

methods, the variance of the error between clean and noisy feature vectors can be reduced if more specific bias vector

transformations are estimated. To do that, we propose learning phoneme-dependent bias vector transformations. That

modification of the MEMLIN is called the Phoneme Dependent MEMLIN (PD-MEMLIN).

A. Ψ(yt, sx, sey) modifications: P-MEMLIN and MEMHIN

1) Polynomial MEMLIN, P-MEMLIN:The novel model,Ψ(yt, sx, sey), for Polynomial MEMLIN is

x(i) ≈ Ψ(yt, sx, s
e
y)(i) = asx,sey (i)yt(i)− bsx,sey (i), (22)

where i is the coefficient index, andasx,sey and bsx,sye are the slope and the independent terms of the model,

respectively. Both depend on the basic environment and on clean and noisy model Gaussians. Note that it is

assumed that the feature coefficients are independent. Using P-MEMLIN, (2) becomes

x̂t(i) =
∑

e

∑

sey

∑

sx

(asx,sey (i)yt(i)− bsx,sey (i))p(e|yt)p(s
e
y|yt, e)p(sx|yt, e, s

e
y) ∀i. (23)



14

The only modification to MEMLIN isΨ(yt, sx, sey); therefore, the expressions ofp(e|yt), p(sey|yt, e), and

p(sx|yt, e, sey) are estimated as (14), (15), and (19) or (20), respectively. On the other hand,asx,sey (i) andbsx,sey (i)

are computed in the training phase using stereo data

asx,sey (i) =
σxsx,sey (i)

σysx,sey (i)
, (24)

bsx,sey (i) =
σxsx,sey (i)

σysx,sey (i)
μysx,sey (i)− μ

x
sx,sey
(i), (25)

whereσxsx,sey (i) andσysx,sey (i) are thei coefficients of the standard deviations of clean and noisy feature vectors,

respectively, associated with the pair of Gaussianssx andsey. μ
x
sx,sey
(i) andμysx,sey (i) are theith coefficients of the

means of clean and noisy feature vectors associated withsx and sey. They are computed as follows, wherez can

be x or y

μzsx,sey (i) =

∑
te
p(sx|xte)p(s

e
y|yte)zte(i)∑

te
p(sx|xte)p(sey|yte)

, (26)

σzsx,sey (i) =

√∑
te
p(sx|xte)p(sey|yte)(zte(i)− μ

z
sx,sey
(i))2

∑
te
p(sx|xte)p(sey|yte)

, (27)

Note that if the standard deviation terms are equal (σxsx,sey (i) = σ
y
sx,sey
(i), ∀i), the algorithm expressions are the

same as those in the MEMLIN.

2) Multi-Environment Model-based HIstogram Normalization (MEMHIN):Although P-MEMLIN uses a first

order polynomial to compensate for the variance transformations, sometimes noise can produce a more complex

modification of clean and noisy feature pdfs associated with a pair of Gaussians. In that case, the linear approximation

for Ψ(yt, sx, sey) of MEMLIN or P-MEMLIN is not the best option; therefore, we propose a non-linear model based

on histogram equalization. The new model is expressed as

Ψ(yt, sx, s
e
y) = C

−1
x,sx,sey

(Cy,sx,sey (yt)), (28)

whereCx,sx,sey is the clean feature vector cumulative probability associated withsx andsey Gaussians, andC−1x,sx,sey
is the reciprocal function.Cy,sx,sey is the noisy feature vector cumulative probability associated withsx and sey

Gaussians. For MEMHIN, (2) takes the following expression

x̂t =
∑

e

∑

sphx

∑

se,phy

C−1x,sx,sey (Cy,sx,sey (yt))p(e|yt)p(s
e
y|yt, e)p(sx|yt, e, s

e
y). (29)

The only difference between MEMLIN and MEMHIN isΨ(yt, sx, sey); therefore, the probabilitiesp(e|yt),

p(sey|yt, e), andp(sx|yt, e, sey) are estimated following (14), (15), and (19) or (20), respectively. To computeCx,sx,sey

andCy,sx,sey , then band histograms associated withsx andsey for each component of the noisy and clean feature

vectors are obtained in the training phase, assuming that the components are independent. To estimate the histograms
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for each pair of Gaussians, the components of the feature vectors are weighted by the product of the a posteriori

probabilitiesp(sx|xete , e) and p(sey|y
e
te
, e). Cx,sx,sey and Cy,sx,sey are computed by cumulating the bands of the

corresponding histograms.

3) Results fromΨ(yt, sx, sey) modifications:To compare the results using P-MEMLIN and MEMHIN with those

based on MEMLIN, the experiments described in Section III were repeated.

P-MEMLIN and MEMHIN provide significant improvement over MEMLIN when few Gaussians are considered

(33.87% of MIMP for MEMLIN with 4 Gaussians per basic environment and 39.12% and 37.82% of MIMP

for PMEMLIN and MEMHIN); however, if the algorithms are evaluated using more than 8 Gaussians per basic

environment, the mean results are very similar among the three methods. That performance results from the

compensation of the variance of the feature vectors, which is more important when the number of Gaussians used for

representing the space is reduced. As the number of Gaussians decrease, the space data modelled by each Gaussian

increase and the transformation is more affected by the variance deviation between clean and noisy space. In those

situations, a more complex model ofx (Ψ(yt, sx, sey)) produces significant improvements. Although the methods

behave similarly when there are more than 8 Gaussians, we carried out experiments using controlled additive noise

[18], which demonstrated important improvements by using MEMHIN compared to MEMLIN. MEMHIN is better

able to compensate for the modifications of the variance in feature vectors caused by additive noise. To confirm

that, additive car noise was added to clean signals of the Spanish SpeechDat Car database. Table IV shows some

of the results from MEMLIN and MEMHIN with additive car noise of 5 dB of SNR, and clean and noisy GMM

of 8, 16, and 32 Gaussians to model the clean and the basic environments.

TABLE IV

MEAN WER (MWER) AND MEAN IMPROVEMENT IN WER (MIMP) IN % FOR MEMLIN AND MEMHIN FOR 8, 16AND

32 GAUSSIANS PER BASIC ENVIRONMENT WITH5 DB SNR ADDITIVE NOISE.

MWER (%) MIMP (%)

MEMLIN 8-8 8.15 25.52

MEMLIN 16-16 7.71 30.01

MEMLIN 32-32 7.06 36.63

MEMHIN 8-8 6.93 37.92

MEMHIN 16-16 6.55 41.88

MEMHIN 32-32 6.37 43.64

B. Phoneme-based transformations

1) Phoneme-Dependent MEMLIN, PD-MEMLIN:To obtain a more specific set of transformations, trying to

reduce the uncertainty between the normalized feature vectors and the acoustic models, we developed Phoneme-

Dependent MEMLIN (PD-MEMLIN). In PD-MEMLIN, noisy space is divided into a combination of basic acoustic
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environments as MEMLIN and each one is split into phonemes, which are modelled as a GMM. The clean space

is also divided in phonemes and each one of them is modelled as a GMM. Therefore, a bias vector transformation

is associated with each pair of Gaussians from the same phoneme of the clean and noisy basic environment spaces.

• PD-MEMLIN approximations:In PD-MEMLIN, three approximations are considered:

First approximation: noisy space is split into several basic environments,e. The noisy feature vectors associated

with the different phonemes,ph, of each basic environment are modelled as a GMM

pe,ph(yt) =
∑

se,phy

p(yt|s
e,ph
y )p(se,phy ), (30)

p(yt|s
e,ph
y ) = N (yt;μse,phy

,Σ
s
e,ph
y
), (31)

wherese,phy denotes the Gaussian that corresponds to phonemeph and basic environmente; μ
se,phy

, Σ
se,phy

, and

p(se,phy ) are the mean vector, the diagonal covariance matrix, and the a priori probability associated withse,phy .

Second approximation: the clean feature vectors of each phoneme are modelled as a GMM

pph(x) =
∑

sphx

p(x|sphx )p(s
ph
x ), (32)

p(x|sphx ) = N (x;μsphx ,Σsphx ), (33)

wheresphx denotes the Gaussian that corresponds to phonemeph; μ
sphx

, Σ
sphx

, andp(sphx ) are the mean, the diagonal

covariance matrix, and the a priori probability associated withsphx .

Third approximation: PD-MEMLIN assumes that a clean feature vector can be approximated by a linear function

that depends on the basic environment and the phoneme-dependent Gaussians of the clean and noisy models:

x ≈ Ψ(yt, sphx , s
e,ph
y ) = yt−rsphx ,se,phy

, wherer
sphx ,s

e,ph
y

is a bias vector transformation between the clean and noisy

feature vectors of each pair of Gaussians of the same phoneme,sphx andse,phy .

• PD-MEMLIN enhancement:With those approximations, PD-MEMLIN transforms (2) into

x̂t = yt −
∑

e

∑

ph

∑

se,phy

∑

sphx

r
sphx ,s

e,ph
y
p(e|yt)p(ph|yt, e)p(s

e,ph
y |yt, e, ph)p(s

ph
x |yt, e, ph, s

e
y), (34)

wherep(e|yt) is the a posteriori probability of the basic environment;p(ph|yt, e) is the a posteriori probability of

the phoneme, given the noisy feature vector,yt, and the basic environment,e; p(se,phy |yt, e, ph) is the a posteriori

probability of the phoneme-dependent Gaussian of the noisy model,se,phy , given the noisy feature vector,yt, the basic

environment,e, and the phoneme,ph. Finally, p(sphx |yt, e, ph, s
e,ph
y ) is the cross-probability between the phoneme-

dependent Gaussians of the clean and noisy models, given the noisy feature vector,yt, the basic environment,e,

and the phoneme,ph. That term and the bias vector transformationr
sphx ,s

e,ph
y

, are estimated using stereo data in

the training phase.

The a posteriori probability of the basic environment,p(e|yt), is computed iteratively by applying (30) and (31)

as the same way as (14) considering all the phonemes.
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The a posteriori probability of the phonemeph, given the noisy feature vector,yt, and the basic environment,e,

p(ph|yt, e), can be computed using (30), and (31)

p(ph|yt, e) =
pe,ph(yt)∑
ph pe,ph(yt)

. (35)

The a posteriori probability of the phoneme-dependent Gaussian of the noisy model,se,phy , given the noisy feature

vector,yt, the basic environment,e, and the phoneme,ph, p(se,phy |yt, e, ph), is computed using (30) and (31) as

the same way as (15) considering the different phonemes.

• PD-MEMLIN training:Using clean training feature vectors, a forced Viterbi segmentation in phonemes is used to

get a stereo data corpus for each basic environment and phoneme(Xe,ph, Ye,ph) =
{
(xe,ph1 , ye,ph1 ); ...; (xe,phte,ph , y

e,ph
te,ph
);

...; (xe,phTe,ph , y
e,ph
Te,ph
)
}

, with te,ph ∈ [1, Te,ph]. The bias vector transformation,r
s
ph
x ,s

e,ph
y

, is estimated by minimizing

the defined mean weighted square error,ξ
s
ph
x ,s

e,ph
y

, with respect tor
s
ph
x ,s

e,ph
y

ξ
sphx ,s

e,ph
y
=
∑

te,ph

p(sphx |x
e,ph
te,ph
, e, ph)p(se,phy |ye,phte,ph

, e, ph)(xe,phte,ph − y
e,ph
te,ph
+ r

sphx ,s
e,ph
y
)2, (36)

r
sphx ,s

e,ph
y
= arg min
r
s
ph
x ,s

e,ph
y

(ξ
sphx ,s

e,ph
y
) =

∑
te,ph
p(sphx |x

e,ph
te,ph
, e, ph)p(se,phy |ye,phte,ph

, e, ph)(ye,phte,ph
− xe,phte,ph)

∑
te,ph
p(sphx |x

e,ph
te,ph
, e, ph)p(se,phy |ye,phte,ph

, e, ph)
, (37)

wherep(sphx |x
e,ph
te,ph
, e, ph) is the a posteriori probability of the phoneme-dependent Gaussian of the clean model,

sphx , given the clean feature vector,xe,phte,ph , the basic environment,e, and the phoneme,ph. It can be computed by

applying (32), (33)

p(sphx |x
e,ph
te,ph
, e, ph) =

p(xe,phte,ph |s
ph
x )p(s

ph
x )

∑
sphx
p(xe,phte,ph |s

ph
x )p(s

ph
x )
. (38)

The cross-probability between the phoneme-dependent Gaussians of the clean and noisy models, is simplified

by avoiding the time dependence given by the noisy feature vector,yt, p(sphx |yt, e, s
e,ph
y , ph) ' p(sphx |e, s

e,ph
y , ph).

There are two ways to computep(sphx |e, s
e,ph
y , ph): using relative frequency (hard solution), which expression is

p(sphx |yt, e, s
e,ph
y , ph) ' p(sphx |s

e,ph
y , e, ph) =

CN (s
ph
x |s

e,ph
y )

N
se,phy

, (39)

whereCN (sphx |s
e,ph
y ) is the count number of times that the most probable pair of Gaussians issphx , andse,phy for all

pairs of stereo training data ofe basic environment andph phoneme, andN
se,phy

is the count number of times that

the most probable Gaussian for noisy training feature vectors isse,phy for e basic environment andph phoneme.

Soft solution can be obtained using (30), (31), (32), and (33) as

p(sphx |yt, e, ph, s
e,ph
y ) ' p(sphx |s

e,ph
y , e) =

∑
te,ph
p(xe,phte,ph |s

ph
x )p(y

e,ph
te,ph
|se,phy )p(sphx )p(s

e,ph
y )

∑
te,ph

∑
sphx
p(xe,phte,ph |s

ph
x )p(y

e,ph
te,ph
|se,phy )p(sphx )p(s

e,ph
y )

. (40)

Since it is possible that some phonemes do not have associated enough data, all the experiments were carried

out applying the soft solution.
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2) Results from PD-MEMLIN:The same experiments defined in Section III were performed again, normalizing

the noisy feature vectors with PD-MEMLIN. Bias vector transformations were obtained for all the 25 Spanish

phonemes and the silence. Although only some of the phonemes would be necessary in this task, all of them were

included in the normalization process. Figure 4 presents the mean improvement in WER in% of PD-MEMLIN

comparing to MEMLIN. To make a fair comparison between two methods, the results have been plotted as a

function of the number of Transformations per basic Environment,TpE, which each method has to compute for

each frame in normalization, inlog10

TpE = log10(nsphy nsphx nph), (41)

wheren
sphy

andn
sphx

are the number of noisy and clean model Gaussians forph phoneme, respectively, andnph

is the number of phonemes (nph = 1, for MEMLIN). In this work, all of the phonemes have the same number of

clean and noisy model Gaussians per basic environment: 2, 4, 8, 16 or 32.
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Fig. 4. Mean improvement in WER of MEMLIN and PD-MEMLIN.

The results show that PD-MEMLIN makes significant improvements relative to MEMLIN, specially when more

than four Gaussians per phoneme are used (TpE = 2.62). Figure 5 shows the histogram and scattegram of the

first MFCC coefficient in non-silence frames for clean and normalized data using PD-MEMLIN with 16 Gaussians

per basic environment for the E4 basic environment. From this figure, we can conclude that the transformations

proposed by PD-MEMLIN solve the problem of mapping the noisy feature vectors towards the clean silence as in

MEMLIN. PD-MEMLIN reduces the mapping space at the level of the phonemes, adapting in a better way the

bias vector transformations to the acoustic models.

To estimate the limit of the PD-MEMLIN approximation, a new experiment was performed. Each frame was

normalized using only the bias vector transformations of the “correct” phoneme,p̂h, which is obtained using a

forced Viterbi segmentation in phonemes on the clean testing feature vectors. That pseudo-method is called Known

PD-MEMLIN (KPD-MEMLIN), and (34) is transformed into (42)
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Fig. 5. Scattegram and histogram between the first MFCC coefficient in non-silence frames for clean (x-axis) and normalized using PD-

MEMLIN with 16 Gaussians per phoneme (y-axis) signals from the E4 basic environment. The line in the scattergram represents the function

x = y.
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Fig. 6. Scattegram and histogram between the first MFCC coefficient in non-silence frames for clean signals (x-axis) and signals normalized

using KPD-MEMLIN with 16 Gaussians per phoneme (y-axis) from the E4 basic environment. The line in the scattergram represents the function

x = y.

x̂t = yt −
∑

e

∑

se,p̂hy

∑

sp̂hx

r
sp̂hx ,s

e,p̂h
y

p(e|yt)p(s
e,p̂h
y |yt, e, p̂h)p(s

p̂h
x |yt, e, p̂h, s

e
y). (42)

Table V shows the results for clean signal (CLK) and KPD-MEMLIN with 16 Gaussians per phoneme. The

scattegram and the histogram between the first MFCC coefficient in non-silence frames for clean and normalized

using KPD-MEMLIN with 16 Gaussians per phoneme are presented in Fig. 6.

TABLE V

MEAN WER (MWER) AND MEAN IMPROVEMENT IN WER (MIMP), IN % OF THE DIFFERENT BASIC ENVIRONMENTS FOR

THE CLEAN SIGNAL (CLK) AND NORMALIZED ONE WITH KNOWN PD-MEMLIN WITH 16 GAUSSIANS PER BASIC

ENVIRONMENT.

E1 E2 E3 E4 E5 E6 E7 MWER (%) MIMP (%)

CLK 0.38 2.06 1.40 0.50 0.57 0.16 0.00 0.86 –

KPD-MEMLIN 16-16 0.58 2.23 1.81 1.00 0.57 0.160.00 1.05 98.19
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Table V and Fig. 6 indicate an improvement of almost 100%, while the uncertainty between clean and normalized

feature vectors using KPD-MEMLIN is not reduced significantly. Therefore, the phoneme-dependent normalization

maps the noisy feature vectors inside the own uncertainty of the phonemes, which are modelled by the acoustic

models. This fact can be confirmed by computing the Mean Correct Phoneme (MCP) recognition rate. For this

purpose, the correct phoneme sequence is the one obtained by forced Viterbi segmentation over clean signal using

the clean acoustic models. For each normalized feature vector, the most probable phoneme is obtained using the

clean phoneme-dependent GMMs. The MCP rate is computed as the rate of correct phonemes over all the testing

utterances. Table VI shows the MCP rates for PD-MEMLIN and KPD-MEMLIN with 16 Gaussians per phoneme

and for all of the basic environments. KPD-MEMLIN matches the frames with the correct phoneme much better

than does PD-MEMLIN, increasing the average MCP more than 10%.

TABLE VI

MEAN CORRECTPHONEME (MCP) RECOGNITION RATE IN% FOR NORMALIZED NON-SILENCE SIGNALS USING

PD-MEMLIN AND KNOWN PD-MEMLIN WITH 16 GAUSSIANS PER PHONEME IN EACH OF THE SEVEN BASIC

ENVIRONMENTS.

MCP (%) E1 E2 E3 E4 E5 E6 E7 Mean

PD-MEMLIN 16-16 32.64 31.23 30.38 32.54 32.04 34.1431.21 32.03

KPD-MEMLIN 16-16 37.68 40.15 39.87 43.06 45.15 48.3550.28 42.42

From Tables V and VI, we conclude that the proposed transformations associated to the different phonemes

are consistent, because the feature vectors are mapped from the noisy space to the space associated to the forced

clean phonemes. Therefore, it provides a future line of research which consists on estimating in a better way

the a posteriori probability of the phoneme,ph, given the noisy feature vector,yt, and the basic environment,e,

p(ph|yt, e).

3) “Blind” PD-MEMLIN: In many cases, stereo data are not available; therefore, an iterative “blind” training

procedure is needed. As PD-MEMLIN results are better than any other considered feature vector normalization

method, we propose a “blind” training procedure for PD-MEMLIN. The expressions for MEMLIN can be obtained

directly from the “blind” PD-MEMLIN ones.

Let us assume that the noisy training feature vectors and the phoneme-dependent clean and noisy GMMs are

available. So, the problem is to estimate the cross-probability between the phoneme-dependent Gaussians of the

clean and noisy models,p(sphx |s
e,ph
y , e, ph), and the bias vector transformation,r

sphx ,s
e,ph
y

, without the clean part

of the training stereo data. The proposed iterative “blind” training procedure consists of an initialization and an

iterative process.

In the initialization,p0(sphx |s
e,ph
y , e, ph) and r0,sphx ,se,phy

are obtained.p0(sphx |s
e,ph
y , e, ph) is estimated using a

modified Kullback Liebler distance [24], which gives a similarity measure ofsphx andse,phy without considering the

effects of the noise. For initialization purposes, we assume that the noise modifies mainly the mean vectors of the
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Gaussian models. So, the similarity between Gaussians is computed in terms of the a priori probabilities and the

diagonal covariance matrices of the corresponding Gaussians. Thus, given the phoneme-dependent Gaussians of the

clean and noisy models,se,phy andsphx , the modified Kullback Liebler distance,dKL(se,phy , sphx ), can be computed

as follows

dKL(s
e,ph
y , sphx ) =

p(se,phy )

2

∑

i

[log(
Σ
sphx
(i, i)

Σ
se,phy
(i, i)

) +
Σ
se,phy
(i, i)

Σ
sphx
(i, i)

− 1] + p(se,phy )log(
p(se,phy )

p(sphx )
). (43)

whereΣ
sphx
(i, i) is andΣ

se,phy
(i, i) are theith term of the diagonal covariance matrices of thesphx and these,phy

Gaussians.

The modified Kullback Liebler distance is not symmetric and it is not proportional to the likelihood; therefore,

a pseudo-likelihood,plKL(s
e,ph
y , sphx ), is defined

plKL(s
e,ph
y , sphx ) =

1

dKL(s
e,ph
y , sphx ) + dKL(s

ph
x , s

e,ph
y )

, (44)

Finally, p0(sphx |s
e,ph
y , e, ph) is estimated as

p0(s
ph
x |s

e,ph
y , e, ph) =

plKL(s
e,ph
y , sphx )

∑
sphx
plKL(s

e,ph
y , sphx )

. (45)

On the other hand,r0,sphx ,se,phy
is obtained replacingx

te,ph
e,ph

with μ
sphx

in (37)

r0,sphx ,se,phy
=

∑
te,ph
p(se,phy |ye,phte,ph

, e, ph)(ye,phte,ph
− μ

sphx
)

∑
te,ph
p(se,phy |ye,phte,ph

, e, ph)
, (46)

A very simple recognition experiment with phoneme acoustic models was carried out, normalizing the noisy signal

with p0(sphx |s
e,ph
y , e, ph) andr0,sphx ,se,phy

and four Gaussians per phoneme-dependent GMM. The mean improvement

in WER over the seven basic environments was 20.2%.

Oncer0,sphx ,se,phy
is computed,r

sphx ,s
e,ph
y

can be estimated iteratively by the EM [25] algorithm in a similar way

as [7] (see appendix I). In this case, the corresponding expression for thenth iteration,r
n,sphx ,s

e,ph
y

, with n > 0, is

r
n,sphx ,s

e,ph
y
=

∑
te,ph
p(se,phy |ye,phte,ph

, e, ph)p(sphx |y
e,ph
te,ph
, se,phy , n− 1)(ye,phte,ph

− μ
sphx
)

∑
te,ph
p(se,phy |ye,phte,ph

, e, ph)p(sphx |y
e,ph
te,ph
, se,phy , n− 1)

, (47)

p(sphx |y
e,ph
te,ph
, se,phy , n− 1) =

N(yte,ph ;μsphx + rn−1,sphx ,se,phy
,Σ
se,phy
)p(se,phy )

∑
sphx
N(yte,ph ;μsphx + rn−1,sphx ,se,phy

,Σ
se,phy
)p(se,phy )

, (48)

The same simple recognition experiment with phoneme acoustic models was performed, normalizing the noisy

signal with p0(sphx |s
e,ph
y , e, ph) and r

n,sphx ,s
e,ph
y

and four Gaussians per phoneme-dependent GMM. The mean

improvement in WER in this case was 41.03% if n = 1, and 46.90% if n = 10.

To improve the estimation ofp0(sphx |s
e,ph
y , e, ph), pseudo-stereo data are obtained normalizing the noisy training

feature vectors with KPD-MEMLIN. In this case, the phoneme associated with each noisy training feature vector,

p̂h, is estimated using a forced Viterbi segmentation of noisy training utterances. With the pseudo-stereo data,
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(X̂e,ph, Ye,ph) = {(x̂
e,ph
1 , ye,ph1 ); ...; (x̂e,phte,ph , y

e,ph
te,ph
); ...; (x̂e,phTe,ph , y

e,ph
Te,ph
)}, wherex̂e,ph

tphe
is the normalized feature vector

of ye,ph
tphe

, a new iteration forp(sphx |s
e,ph
y , e, ph) can be estimated using (39), or (40).

Using one iteration of the EM algorithm to estimatersphx ,se,phy
and another one to computep(sphx |s

e,ph
y , e, ph) with

pseudo-stereo data, the mean improvement in WER with phoneme acoustic models and four Gaussians per phoneme-

dependent GMM was 50.23%. As the use of pseudo-stereo data produces significant improvements, they can also

be used to adjust the estimation ofr
sphx ,s

e,ph
y

using (37). So, ifp(sphx |s
e,ph
y , e, ph) is estimated with three iterations

and the first iteration ofr
sphx ,s

e,ph
y

with the EM algorithm,r1,sphx ,se,phy
, is tuned with two additionally iterations

with pseudo-stereo data, the mean improvement in WER with phoneme acoustic models and four Gaussians per

phoneme-dependent GMM was 58.68%. These results show that the use of the EM algorithm and the pseudo-stereo

data jointly produces important improvements. “Blind” MEMLIN training procedure can be developed in the same

way as PD-MEMLIN, avoiding the phoneme dependence.

4) Results from “blind” PD-MEMLIN: The experiments in Section III were performed again, using “blind”

PD-MEMLIN. The mean improvement in WER in% of “blind” PD-MEMLIN compared to PD-MEMLIN and

MEMLIN is presented in Fig. 7. Three iterations with pseudo-stereo data were needed forp(sphx |s
e,ph
y , e, ph), and

r
sphx ,s

e,ph
y

was estimated with two iterations with pseudo-stereo data, oncer1,sphx ,se,phy
had been computed with the

EM algorithm.

1 1.5 2 2.5 3 3.5 4 4.5
30

40

50

60

70

80

Number of transformations per environment, in log, TpE.

M
ea

n 
im

pr
ov

em
en

t, 
M

IM
P

, i
n 

%
.

MEMLIN
PD-MEMLIN
Blind PD-MEMLIN

Fig. 7. Mean improvement in WER of MEMLIN, PD-MEMLIN and “blind” PD-MEMLIN.

The results show that “blind” PD-MEMLIN is able to produces improvements that are very similar to MEMLIN

ones for all TpE.

The most representative results from each of the improvement methods over MEMLIN are summarized in Table

VII, indicating the TpE required to obtain the best corresponding values. It can be observed that PD-MEMLIN

obtains the best improvement with the smallest TpE.

V. DISCUSSION AND CONCLUSION

In this work, some basic methods of feature vector normalization based on MMSE estimator and stereo data, such

as RATZ, SPLICE, and our proposed technique MEMLIN, have been explained and compared using real car noise
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TABLE VII

BEST MEAN WER (MWER) AND MEAN IMPROVEMENT IN WER (MIMP) IN % FROM MEMLIN, MEMHIN, P-MEMLIN,

PD-MEMLIN AND “ BLIND ” PD-MEMLIN, WITH THE REQUIRED TPE INDICATED.

TpE MWER (%) MIMP (%)

MEMLIN 4.21 4.16 69.09

MEMHIN 4.21 4.26 68.09

P-MEMLIN 4.21 4.14 69.24

PD-MEMLIN 3.82 3.60 74.32

“Blind” PD-MEMLIN 4.42 4.07 69.88

TABLE VIII

MEAN WER (MWER) AND MEAN IMPROVEMENT IN WER (MIMP) IN % FROM THE METHODSMEMLIN, MEMHIN,

PD-MEMLIN, AND “ BLIND ” PD-MEMLIN WITH ML- ADAPTED ACOUSTIC MODELS TO THE NORMALIZED SPACE. THE

NUMBER OF GAUSSIANS PER BASIC ENVIRONMENT ARE INDICATED BESIDE THE NAME OF EACH NORMALIZATION METHOD.

MWER (%) MIMP (%)

CLK 0.86 –

HF 3.95 71.05

† HF 2.82 81.59

MEMLIN 128-128 + ML 3.70 73.33

MEMHIN 128-128 +ML 3.40 76.15

PD-MEMLIN 32-32 + ML 3.09 79.10

“Blind” PD-MEMLIN 32-32 + ML 2.72 82.55

conditions from the SpeechDat Car database. With respect to RATZ and SPLICE, MEMLIN proposes modelling

clean and noisy spaces with GMMs, learning a bias vector transformation for each pair of Gaussians (one for the

clean GMM and the other one for the noisy GMM). MEMLIN produces results that are significantly better than

those obtained using other methods. MEMLIN produces a mean improvement in WER of 69.09%, far away from

48.82% of Interpolated RATZ and better than 64.46% of SPLICE with environmental model selection.

Further improvements have been considered using first order polynomial and a non-linear function for each pair

of Gaussians instead of the bias vector transformation in MEMLIN. The new methods are called P-MEMLIN and

MEMHIN, respectively. Both methods compensate for the effects of the noise in the mean and the variance of the

feature vectors. The results show an improvement concerning MEMLIN when less number of Gaussians is used.

When the number of Gaussians increases, the improvements in WER are very similar (68.09% and 69.24% for

MEMHIN and P-MEMLIN with 128 Gaussians, respectively).

MEMLIN, P-MEMLIN and MEMHIN allow mapping from any noisy GMM Gaussian towards any clean GMM
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Fig. 8. Scattegram and histogram between the first MFCC coefficient in non-silence frames for clean (x-axis) and normalized using MEMLIN

with 128 Gaussians per basic environment, wherep(sx|sey , e) is computed with clean signal asp(sx|xt). The line in the scattergram represents

the functionx = y.

Gaussian. PD-MEMLIN has been developed to constrain the mapping space in terms of the acoustic models. So,

noisy and clean spaces are split into phonemes and the transformations are only possible between Gaussians of

the same phoneme. The improvement in WER of PD-MEMLIN is 74.32%. As in many cases stereo data are

not available, a “blind” training procedure has been developed to estimate the needed variables for PD-MEMLIN

without the clean part of the stereo data. The improvement in WER in this case reaches 69.88%, which is even

better than MEMLIN. Furthermore, It can be observed that a perfect estimation of the a posteriori probability of

the phoneme, given the noisy feature vector and the basic environment, in PD-MEMLIN (KPD-MEMLIN) can

generate almost a 100% of improvement in WER, while the uncertainty between the clean feature vectors and the

normalized ones is not reduced significantly.

Although the transformation is not perfect, the normalized feature vectors define a new normalized space more

homogeneous than the noisy one. So, new acoustic models can be retrained with the normalized training data.

The MWER and MIMP results are presented in Table VIII. It can be observed that the results for all techniques

are better than the ones obtained with noisy acoustic models, HF, and in some cases very similar to use specific

acoustic models for each environment,† HF.

In all the presented techniques, the estimation of the cross-probability model term,p(sx|yt, e, sy), in MEMLIN,

P-MEMLIN and MEMHIN, andp(sphx |yt, e, s
e,ph
y ), in PD-MEMLIN, has a hugh impact on the final performance. A

simple experiment approximating the cross-probability model using the clean feature vectors gives an improvement

in WER close to 100%, and reducing dramatically the uncertainty between the clean feature vectors and the

normalized ones, as shown in the Fig. 8. These results open a new line of future work, improving the estimation

of the cross-probability model and the a priori probability of the phoneme, given the noisy feature vector and the

basic environment.
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APPENDIX I

ESTIMATION OF rsphx ,se,phy
BY THE EM ALGORITHM FOR “ BLIND ” PD-MEMLIN.

We consider a set of noisy labeled feature vectors associated to a basic environmente, and a phoneme,ph,

Y phe = {ye,ph1 ; ...; ye,phte,ph
; ...; ye,phTe,ph

}, with te,ph ∈ [1, Te,ph]. Noisy and clean feature vectors are modelled with

GMMs: (30) (31), (32) and (33). We assume that the pdf of the noisy feature vectors, givensphx , se,phy , thee basic

environment and theph phoneme is

p(ye,phte,ph
|sphx , s

e,ph
y , e, ph) = N(ye,phte,ph

;μ
sphx
+ r

sphx ,s
e,ph
y
,Σ
se,phy
). (A.1)

The log-likelihood function,L(Y phe ) is

L(Y phe ) =
∑

te,ph

log
∑

se,phy

∑

sphx

p(sphx , s
e,ph
y |e, ph)N(ye,phte,ph

;μ
sphx
+ r

sphx ,s
e,ph
y
,Σ
se,phy
), (A.2)

wherep(sphx , s
e,ph
y |e, ph) is the joint probability of the pair of Gaussians, given the basic environment,e, and the

phoneme,ph. The auxiliary functionQ(φ, φnew)phe , with φ = {r
s
ph
x ,s

e,ph
y
} is defined as

Q(φ, φnew)
ph
e =

∑

te,ph

∑

se,phy

∑

sphx

p(sphx , s
e,ph
y |ye,phte,ph

, φ, e, ph)log(p(ye,phte,ph
, sphx , s

e,ph
y |φnew, e, ph)), (A.3)

DefiningΩ = ye,phte,ph
− μ

sphx
− r

new,sphx ,s
e,ph
y

, (A.3) is transformed into

Q(φ, φnew)
ph
e = constant+

∑

te,ph

∑

se,phy

∑

sphx

p(sphx , s
e,ph
y |ye,phte,ph

, φ, e, ph)(−
1

2
log|Σ

se,phy
| −
1

2
ΩTΣ

se,phy
Ω). (A.4)

The value ofr
new,sphx ,s

e,ph
y

is obtained by taking derivatives and setting it equal to zero

r
new,sphx ,s

e,ph
y
=
δ(Q(φ, φnew)

ph
e )

δ(r
new,sphx ,s

e,ph
y
)
=
∑

te,ph

p(sphx , s
e,ph
y |ye,phte,ph

, φ, e, ph)Σ
se,phy
(ye,phte,ph

− μ
sphx
− r

new,sphx ,s
e,ph
y
) = 0.

(A.5)

r
new,sphx ,s

e,ph
y
=

∑
te,ph
p(sphx , s

e,ph
y |ye,phte,ph

, φ, e, ph)(ye,phte,ph
− μ

sphx
)

∑
te,ph
p(sphx , s

e,ph
y |ye,phte,ph

, φ, e, ph)
, (A.6)

wherep(sphx , s
e,ph
y |ye,phte,ph

, φ, e, ph) can be computed as follows

p(sphx , s
e,ph
y |ye,phte,ph

, φ, e, ph) ' p(se,phy |ye,phte,ph
, e, ph)p(sphx |y

e,ph
te,ph
, se,phy , φ, e, ph). (A.7)

p(sphx , s
e,ph
y |ye,phte,ph

, φ, e, ph) ' p(se,phy |ye,phte,ph
, e, ph)

p(se,phy )p(ye,phte,ph
|sphx , s

e,ph
y , φ)

∑
sphx
p(se,phy )p(ye,phte,ph

|sphx , s
e,ph
y , φ)

. (A.8)
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