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Abstract. The configuration matrix of a set of labeled landmarks is one
the most used shape representations. However, it is well-known that the
configuration matrix is not invariant under translation, scaling and rota-
tion. This problem is revisited in this work where a local tangent shape
space characterization at a reference shape is obtained as the null space
of the subspace spanned by the reference shape and the set of transla-
tion and rotation generators. This local linear description of the shape
space allows us to compute mean and variance of shapes as well as apply
classical mutivariate statistical techniques such as Principal Component
Analysis. Our proposal is compared with previous approaches, such as
the seminal work [1] and more recents works [2] and [3].

1 Introduction

Shape analysis is concerned with the study of the geometrical descriptors that
are invariant to position, size and orientation. Shape analysis has proven to
be very useful in several tasks of computer vision and medical imaging, such
as segmentation of anatomical structures or detecting and quantifying shape
differences driven by pathology.

Several shape descriptors have been proposed in the literature. Many authors
use a set of landmarks on the shape boundary as relevant geometric features [1,
2]. A recent comprehensive survey on shape analysis with landmarks can be found
in [4]. However it is well known that the configuration matrix is not invariant
under translation, scaling and rotation.

When using a set of labeled landmarks, one way to achieve a shape description
invariant to position, size and orientation is by means of Procrustes alignment.
A complete analysis of Procrustes shape space was done in [5, 6], where a deep
understanding of the topology of Riemannian manifolds is used.

In this work we propose a procedure to obtain a local shape characterization,
by using a tangent space projection and a Riemannian exponential mapping.
This shape description allows us to apply classical multivariate statistical tools
in shape space with accuracy. For example we applied Principal Component
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Analysis (PCA) on several characterizations of shape space and compared their
performance.

2 Shape characterization and distances

Shape is usually defined as the geometrical information of an object that is
invariant under a similarity transformation, i.e. location, orientation and scale
[7]. In this work we will focus on a particular shape description, that is the set
of k labeled points in R

m. The coordinates of these points can be arranged in a
k ×m configuration matrix X, or equivalently on a km× 1 configuration vector
x = vec(X). We will use the notation zi to denote the k × 1 vector containing
the ith column of any k×m matrix Z, and zj to denote different km×1 vectors
indexed by j.

A configuration matrix X is not a proper shape descriptor, because it is not
pose invariant. For any similarity transformation, i.e. s ∈ R

+, R ∈ SO(m) (the
special orthogonal group) and t ∈ R

m, the configuration given by sXR + 1kt
T

describes the same shape than X, where 1k is the k × 1 vector [1 1 . . . 1]T.
In order to get a shape descriptor invariant under scale and translation several

constraints on X can be used. For example, if X is forced to be a unity norm
matrix ‖X‖2 = tr(XXT) = 1 (or equivalently xTx = 1), and to have null
centroid 1T

k X = 0T
m, then scaling and translation effects are removed from X.1

As the set of unitary vectors xTx = 1 corresponds to the unit sphere S
mk−1, the

condition of having null centroid is equivalent to intersect S
mk−1 with the null

space of the matrix [(1T
k 0T

k . . . 0T
k )T, (0T

k 1T
k . . . 0T

k )T, . . . , (0T
k 0T

k . . . 1T
k )T].

The intersection corresponds again to a unit sphere, S
m(k−1)−1, named pre-shape

space Sk
m.

The shape space Σk
m is the set of equivalence classes of Sk

m under the action
of SO(m). The mapping that takes a configuration vector x ∈ Sk

m to shape
space is x = π(x) : Sk

m → Σk
m. All the elements in the equivalence class of x,

also called fiber, are the set {π−1 (π(x))}.
The distance between shapes can be defined in several ways, depending on

the problem at hand. The Riemannian distance in pre-shape space ρ(x,y) is
the length of the shortest curve segment in S

m(k−1)−1 that connects x and y

(great-circle): ρ(x,y) = 2 arcsin(1
2‖x − y‖). However, in this work we are in-

terested in the Procrustes distance, i.e. the distance in shape space, defined as
d(π(x), π(y)) = inf

R∈SO(m)
ρ(x,Ry), with x,y ∈ Sk

m.

2.1 Local tangent parametrisation of shape space

Given a reference configuration vector µ ∈ Sk
m and π(µ) ∈ Σk

m its correspond-
ing shape, shapes in a finite neighbourhood of π(µ) can be characterized by
variations in Sk

m from µ.

1 Another way to remove translation can be obtained by multiplying X by the (k −
1) × k Helmert sub-matrix [2].
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The tangent space at µ of pre-shape space, TµSk
m, is a linear space that can

be used as a linear approximation, as well as a parametrization of Sk
m, via the

exponential-logarithm mapping. We will see that a linear subspace of TµSk
m can

be found that is also the tangent space at π(µ) of Σk
m.

Any vector x ∈ Sk
m close to the reference shape µ ∈ Sk

m, can be written as

x = cos(θ)µ + sin(θ)v (1)

with xTx = µ
T
µ = vTv = 1, and µ

Tv = 0. As µ and x are centered, xTti =
µ

Tti = 0, where the pure translation vectors {ti}m
i=1 are given by ti

i = 1k and
ti
j = 0k for i 6= j. It can be checked that also vTti = 0.

The tangent space at µ, TµSk
m, is formed by the set of vectors u = θv. In

order to extend classical statistics on the shape space a mapping between the
manifold and its tangent space that preserves distances and angles is required.
The exponential map

expµ(u) = cos(u)µ + sin(u)û (2)

with u = ‖u‖ and û = u/u, generates geodesics with initial velocity u, and
accomplishes that u is the Riemannian distance between µ = expµ(0) and
expµ(u), i.e. ρ(expµ(0), expµ(u)) = u. The angle between geodesics is the angle
between their corresponding initial velocities. The logarithm map is the inverse
of the exponential map:

logµ(x) = 2 arcsin(1/2‖x− µ‖) x− (µT x)µ

‖x− (µT x)µ‖ , (3)

therefore:
ρ(µ,x) = ‖ logµ(x)‖ (4)

In order to get rid of rotations, the variations from µ should be orthogonal
to the fibers π−1(π(µ)). Let Ωi,j(θ) ∈ SO(m), i < j ≤ m, be a rotation matrix
in the plane {i, j} with rotation angle θ. It can be seen that the fiber Ri,j(θ)µ,
with Ri,j(θ) = (Ik ⊗ Ωi,j(θ)), is a curve in Sk

m but not a geodesic for m > 2. It
was shown in [5, 8, 9] that if one moves away from µ along geodesics orthogonally
to fibers (no matters fibers are not geodesics), a Riemannian submersion from
Sk

m onto Σk
m is obtained. Roughly, this means that identifying parts of Σk

m with
submanifolds of Sk

m orthogonal to fibers, is a smooth mapping with the same
metric. This allows us to work in Sk

m as if it were Σk
m, in a neighbourhood of

µ. The tangent directions to fibers Ri,j(θ)µ at µ are given by their derivatives
ri,j : with r

i,j
i = µj , r

i,j
j = −µi, and r

i,j
l = 0k for i, j 6= l. The same result

can be found in [6], from a more theoretical point of view. Any configuration x

Procrustes aligned to µ, fulfils the following linear constraints: xTri,j = 0. This
is also true for µ, then vTri,j = 0.

Fig. 1 shows schematically the pre-shape space Sk
m as a 2-sphere. The fiber

Ri,j(θ)µ is a small circle labeled as Rµ, and its tangent direction as r. The
shape space Σk

m is obtained by intersecting the pre-shape sphere with a plane
orthogonal to r.
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Fig. 1. Schematic representation of pre-shape space Sk
m. Shape space Σk

m is identified
with the submanifold orthogonal to fiber Rµ in a neighbourhood of reference shape µ.

Summing up all the constraints on v can be written as vTN = 0km, with
N = (µ, t1, t2, . . . , tm, r1,2, r1,3, . . . , r(m−1),m). The intersection of the pre-shape
sphere S

m(k−1)−1 and the hyperplane defined by the null space of {ri,j} is again
a smaller dimension sphere, in this case S

m(k−1−(m−1)/2)−1. Therefore, shape
space, although being a manifold with singularities for m > 2, it behaves like a
sphere in a finite neighbourhood of any nonsingular reference shape µ, with the
metric defined in (4), i.e. d(π(x), π(y)) = ρ(x,y).

We have explicitly removed the m degrees of freedom of translation, the
m(m − 1)/2 ones of rotation and the one of size. If M denotes the matrix con-
taining a basis of the null space of N, any shape can be written as

x = cos(b)µ + sin(b)Mb̂, (5)

with b̂ = b/b, b = ‖b‖ and b an arbitrary vector of R
m(k−1−(m−1)/2)−1. The

parameter vector b is a linear, non-redundant representation of shape space,
that preserve distances to the reference shape µ and angles between geodesics.
Therefore it can be used as an approximate and nice characterization of the
shape space. Note that M only depends on µ, and it is not required a training
set to compute M.

The above conditions are valid at least within a ball around µ with radius
smaller than the distance from µ to the closest singularity, which is usually far
away enough in real problems. The singularities (labeled as s in Fig. 1) arise when
rank(X) < m−1. For m = 3, this means that all the landmarks are located over
a line, and for m = 2 there are no singularities. Fig. 2 shows a simple example
of a geodesic passing through a singularity. It can be seen on bottom left panel
that shapes further away than a singularity accomplish d(π(x), π(y)) 6= ρ(x,y).
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Fig. 2. Up: The reference shape (a tetrahedron) is denoted as µ and its closest singular
shape as s (vertical line). The Procrustes distance between µ and s is about 1. The
vertexes ABC collapse at A’B’C’. Geodesics from µ towards s are illustrated with
dotted lines. On the left upper panel, θ runs in the interval (-0.5,0.5), and on the right
(-1.5,1.5). Note that the configuration obtained for θ = 1.5 corresponds to an inverted
tetrahedron, which is not Procrustes aligned to µ. Bottom left: Values of the pre-shape
Riemannian distance ρ (solid line) and Procrustes distance d (dashed line) from µ for
running values of θ. Bottom right: schematic view of the tangent space TµSk

m.

3 Multivariate statistics on shape space

Classical multivariate statistical techniques such as PCA have been applied to
some linear approximations of shape space. PCA involves estimating the mean
and the modes of variation from a training set.

The mean µE of a set of vectors xn∈Sk
m is computed as an iterative process

including averaging and alignment. At each iteration, classical averaging is per-
formed on landmark coordinates and the vectors are aligned to the normalized
average. The final result µE is the normalized average after convergence. µE

provides the shape that minimizes the Euclidean distance
∑

n ‖µ − xn‖2, but
not the Procrustes distance

∑

n d2(µ,xn) that we are interested in.
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An alternative procedure to compute the mean of a set of elements in Riem-
manian manifolds was proposed in [10]. The method consists on iteratively es-
timating the mean as µ

j+1 = µj exp(1/nΣn logµj (xn)). We used this method
with µE as initialization. This iterative procedure has a fast convergence.

Modes of variation are computed in the tangent space at µ, by means of
SVD of the residues un = logµ(xn). The principal geodesic directions are

given by the singular vectors pk. Singular vectors are collected in the matrix
P. The singular values σk account for their relative importance. The procedure
of computing PCA in the tangent space of a Riemannian manifold is called
Principal Geodesic Analysis (PGA) [10, 11]. Principal geodesics are yk(bk) =
expµ(pkbk) = cos(bk)µ + sin(bk)pk, where bk measures the deviation from the
mean. An arbitrary vector of the PGA model is:

y(b) = expµ(Pb) = cos(b)µ + sin(b)Pb̂, (6)

where b̂ = b/b, and b = ‖b‖.

3.1 Discussion of previous approaches

Previous approaches proposed for PCA on shape space failed on finding the best
linear approximation of the shape space. Cootes’ proposal [1] is one of the most
referenced approaches. Shape was modeled as

yC(b) = µ + PCb, (7)

where PC is the matrix with the principal components of the residues x̃n
C =

xn−µ, and b is a parameter vector. However, the spherical topology of the shape
space was disregarded. Shape model in (7), labeled as PCAC in this work, has
two drawbacks: firstly, shape instances yC don’t have unity norm. Secondly, the
shape Procrustes distance between an instance and µ is neither proportional to
‖b‖, nor symmetric under a sign change of b, i.e. d(µ,yC(b)) 6= d(µ,yC(−b)).
The reason is that ‖PT

Cµ‖ 6= 0 because the residues are not orthogonal to the
mean. Accordingly the maximum number of degrees of freedom is m(k−1−(m−
1)/2) (i.e. one dimension larger than actual Procrustes shape space). Splitting
b into two orthogonal parts, b = bµ + b⊥µ, such that µ

T(PCb⊥µ) = 0, the
asymmetry in norm can be shown as

‖yC(b)‖ = ‖µ(1 + bµ) + PCb⊥µ‖ =
√

(1 + bµ)2 + b2
⊥µ 6=

6=
√

(1 − bµ)2 + b2
⊥µ = ‖µ(1 − bµ) − PCb⊥µ‖ = ‖yC(−b)‖, (8)

with bµ = ‖bµ‖ and b⊥µ = ‖b⊥µ‖. Similarly the Procrustes distance accom-
plishes

d(µ,yC(b)) = 2 arcsin

(

1

2

∥

∥

∥

∥

µ

(

1 − 1 + bµ

‖yC(b)‖

)

− PCb⊥µ

‖yC(b)‖

∥

∥

∥

∥

)

6=

6= 2 arcsin

(

1

2

∥

∥

∥

∥

µ

(

1 − 1 − bµ

‖yC(−b)‖

)

+
PCb⊥µ

‖yC(−b)‖

∥

∥

∥

∥

)

= d(µ,yC(−b)). (9)
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Later works, even realizing the spherical topology of shape space, made use
of a linear projection instead of using the log mapping to project data on the
tangent space.Therefore a distortion in the metric was introduced.

In [3] data is projected into tangent space by scaling xn in such a way that
the residue is perpendicular to µ, x̃n

A = xn(xnT
µ)−1 − µ. In [2] the tangent

coordinates were defined as the linear projection on the plane perpendicular to
the mean, x̃n

B = xn −µ(µTxn). The approximation done is θ ≈ tan θ in the first
case, while in the second is θ ≈ sin θ, being θ the Procrustes distance from µ to
x. The corresponding shape models are

yA(b) =
µ√

1 + b2
+

PAb√
1 + b2

(10)

yB(b) = µ

√

1 − b2 + PBb (11)

labeled as PCAA and PCAB respectively.
The space spanned by the principal vector is one dimension smaller than

PC as PT
{A,B}µ = 0 and so bµ = 0. Therefore, unlike the model in (7), these

approaches are symmetric under a change of sign of the parameter b. The Pro-
crustes distance from the mean is

d(µ,yA(b)) = ‖ arctan (b) ‖ = d(µ,yA(−b)) (12)

d(µ,yB(b)) = ‖ arcsin (b) ‖ = d(µ,yB(−b)). (13)

Left panel of Fig. 3 illustrates the Procrustes distance from the mean shape
versus signed b. A value of bµ/b of 0.5 was used in the PCAC model. PGA
is the only model for which a linear change of the model parameters implies a
linear variation of the Procrustes distance. On one hand PCAA model generates
instances closer to the mean than PGA, especially for large values of b, which
means that PCAA is more sensitive to outliers. PCAC model has a similar
behaviour for bµ/b small. On the other hand, PCAB generates instances further
away of the mean than PGA in the valid running interval b ∈ [−1, 1].
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Fig. 3. Left: Procrustes distance versus signed b. Right: Model scaling terms versus b.
Solid lines for mean terms and dashed lines for modes of variation terms.
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There is a similarity between PGA, PCAA and PCAB model equations (6),
(10) and (11). Mean and variation modes are orthogonal vectors multiplied by
nonlinear scalar functions. The corresponding Taylor expansions of the mode of
variation term differ at the 3rd order on b, being b − 1/6b3 for PGA, b − 1/2b3

for PCAA and b for PCAB. The model PCAA underestimates the variation
term compared to PGA, while the model PCAB overestimates it, which is in
agreement with the behaviour explained before on the Procrustes distance. The
Taylor expansions of the mean term are different at the 4th order: 1 − 1/2b2 +
1/24b4 for PGA, 1− 1/2b2 + 3/8b4 for PCAA and 1− 1/2b2− 1/8b4 for PGAB .
Right panel in Fig. 3 illustrates both terms for these models.

The Procrustes distance is always smaller than or equal to π/2, but it is
much smaller in most of the real cases. Differences between PGA, PCAA and
PGAB are then very small for this range of distances.

4 Illustrative example

In order to provide a simple illustrative example of the differences between pre-
vious approaches, 100 instances were randomly generated by adding noise to a
reference shape (a cube in this simulation with k = 8). The standard deviation
of the noise was set to 30% of the edge length.

Statistical shape models considered before were computed from the simulated
instances. Mean shape µ as well as the first two variation modes are illustrated
in Fig. 4. There were no visible differences in the mean shape, but significant
differences were found in the variation modes. The second mode of variation of
PCAC (upper right panel in Fig. 4) has a very different direction compared to
PGA because this mode includes a significant part of the mean shape, introduc-
ing a relevant radial component. In contrast, PGA and PCA{A,B} do not suffer
this drawback.

It can be seen in Fig. 4 that the length of PCAA trajectories as well as PCAC

after normalization , are shorter than PGA, while PCAB trajectories are longer.
This is in agreement with the results shown in the left panel of Fig. 3. It is worthy
to note that a large value of b was required to obtain visible differences.

The Procrustes distance between instances and mean shape µ were computed
for several values of the model parameters and are shown in Fig. 5. The profile
of the curves in Fig. 5 resembles the theoretical ones in Fig. 3. The Procrustes
distance in the second mode of variation of PCAC is highly asymmetric due to
the presence of the mean shape in that mode.

PGA is the only approach where a linear change of the model parameters
involves a linear variation of the Procrustes distance from the mean. This prop-
erty is really crucial for any statistical analysis performed on the linear space of
the parameters, such as hypothesis testing, clustering, classification.
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Fig. 4. Mean shape µ (solid line) and the first/second (left/right), modes of variation.
PGA model is illustrated with dotted trajectories of geodesics. Top: Model parameter
b{1,2} runs in the interval (−3σ{1,2}, 3σ{1,2}). Circles denote PCAC straight line trajec-
tories and crosses their corresponding normalized instances. Bottom: Model parameter
b{1,2} runs in the interval (−4σ{1,2}, 4σ{1,2}). Circles denote PCAA and crosses PCAB

trajectories.

5 Conclusions

The problem of shape description by means of a set of landmarks was revis-
ited in this work. A local tangent shape characterization was obtained in earlier
works by removing the degrees of freedom corresponding to scaling, translation
and rotation. The main added value of this work is twofold: firstly, to propose
a simple and intuitive way to understand this shape characterization; secondly,
to apply classical multivariate statistics, such as PCA, on the shape space. The
obtained shape representation is linear, non-redundant and preserves the Pro-
crustes distance between instances and the reference shape, and also preserves
angles between geodesics. Some of these properties do not hold in alternative
models previously proposed in the literature. Additionally, these benefits are ob-
tained with a minimum extra modelling effort and the formulation of the model
resembles the classical ones.
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Fig. 5. Procrustes distance between generated instances y and reference shape µ.
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