
Statistical model of similarity transformations: building a multi-object pose
model of brain structures

Matı́as N. Bossa, Salvador Olmos
{bossa,olmos}@unizar.es

Communications Technology Group (GTC), I3A, University of Zaragoza
Marı́a de Luna 1, 3rd Floor, 50018, Zaragoza, Spain

Abstract

In most of computational anatomy studies, pose is dis-
regarded because pose information mainly depends on non
relevant external factors. However, the relative pose among
different objects belonging to a complex multi-object sys-
tem may be very useful for diagnosis, prognosis and moni-
toring. In this work a methodology to build statistical multi-
object pose models (MOPM) is described. The methodology
is based on Principal Geodesic Analysis because the space
of similarity transformations does not form a vector space.
Methods to compute statistics, namely averages and varia-
tion modes are described in detail. Experimental results are
performed on neuroanatomical structures such as the sub-
cortical nuclei (caudate nucleus, hippocampus, amygdala,
thalamus, putamen, pallidum and lateral ventricles). We
expect that multi-object pose models will be useful because
they provide a valuable a priori information about relative
location, orientation and scale, very useful as a coarse ini-
tialization for segmentation algorithms, or regularization of
segmentation and registration algorithms.

1. Introduction

Computational Anatomy (CA) is being increasingly used
to characterize brain anatomy either in control subjects as
well as abnormalities of brain structures in patients with
neuropsychiatric disorders [6, 2]. In the early 90’s digi-
tal brain atlases were proposed mainly for corregistration
of images from different modalities and volumetric stud-
ies [8]. However, the characterization of subtle anatomi-
cal abnormalities requires methodologies that provide local
shape parameters of structures within the brain, such as the
subcortical nuclei.

Many brain anatomy studies have been performed in
order to search neuroanatomical markers of neuropsychi-
atric disorders. To name a few, volumetry and mor-
phometry studies of the hippocampus and the amygdala

in Alzheimer’s disease (AD) patients [7], volumetry and
morphometry analysis of the thalamus in schizophrenic pa-
tients [3, 5].

The main difficulty to be addressed in the analysis of hu-
man brain is that anatomical structures form a highly com-
plex system, with a large shape variation among individu-
als. Many morphometry studies isolate a single structure
from the rest of the brain and perform statistical inferences
of patient groups regarding clinical categories.

In shape analysis theory, shape is often defined as all the
geometrical information of an object living in an N dimen-
sional space, which is invariant to location, orientation and
very often size. Pose is usually defined as the similarity
transformation that takes a shape from a reference frame to
its actual real world coordinates.

Shape is usually described as the residual of a pose re-
moval procedure. Accordingly, shape description depends
on the particular pose definition. In many actual problems,
pose is disregarded because mainly provides non useful in-
formation, as it depends on external factors (e.g. position
and orientation of the patient within the scanner). How-
ever, the relative pose of the different objects belonging to a
multi-object system may provide a very useful and compact
information. In neuroanatomy, while overall size, position
and orientation depend on external factors, the relative pose
among different anatomical structures (e.g. caudate nucleus,
hippocampus, thalamus, etc) may provide valuable infor-
mation for diagnosis, prognosis, disease and therapy mon-
itoring of several neuropsychiatric disorders. For example,
hemispheric pose asymmetry could be characterized by a
very small set of pose parameters.

Statistical shape analysis is an emerging field with many
applications on medical imaging and computer vision. Prin-
cipal Component Analysis (PCA) is the preferred procedure
for rank reduction and statistical shape analysis. This tech-
nique should be only applied to multivariate data lying on an
Euclidean space. However, similarity transformations form
a Lie group, which is a group and a Riemannian manifold.

To overcome this limitation, Principal Geodesic Analysis



(PGA) has been recently proposed as an extension of PCA,
where the concept of straight lines is replaced by geodesic
curves.

Pennec [16, 15] defined uniform and Gaussian distribu-
tions on general manifolds, and later tensor metrics were
studied in detail, including interpolation of Diffusion Ten-
sor images [17]. Fletcher et al. used Lie group framework
to define PGA for statistical analysis of 3D boundary repre-
sentations based on medial atoms [10, 11, 12] and analysis
of diffusion tensor images [9, 13]. A more detailed review
of previous works on this field can be obtained in [13].

The aim of this paper is twofold. Firstly, to define the
methodology for building statistical models of similarity
transformations. Secondly, to apply this methodology to the
case of a multi-object pose model (MOPM). Experiments
are performed on anatomical structures within the human
brain.

2. Statistics of similarity transformations

Moments are concise but often used and useful statisti-
cal descriptors. The nth moment, and central moment of
a probability density function f(x), are defined as: µ′

n =
E(Xn) =

∫∞
−∞ xnf(x)dx, and µn = E((X − µ′

1)n) =∫∞
−∞(x−µ′

1)nf(x)dx respectively, where E(.) denotes the
mathematical expectation. The simplest and most used way
to describe a data set is in terms of the first moment µ′

1 and
the second central moment µ2, i.e. mean and variance. If
the probability distribution is assumed Gaussian, these two
values provide a complete description of the whole distribu-
tion.

In order to compute moments of geometrical transforma-
tions, a mathematical characterization is required (see sec.
2.3) as well as the concept of distance between any pair
of transformations. Similarity transformations form a Lie
group, where the concept of distance is well defined. In
fact, it is known how to compute mean and variance, and
the analog of principal components, in any Lie group (see
sec. 2.2).

2.1. Lie groups

Lie groups are groups that are also differentiable man-
ifolds. A group G is defined as a set of elements together
with a binary operation (not necessarily commutative, when
this happens the group is called Abelian) or multiplication
x • y = xy = z, x, y, z ∈ G. The operation must fulfill the
following properties: associativity ((xy)z = x(yz)); exis-
tence of an identity element e ∈ G such that ex = xe = x;
and ∀x ∈ G exists x−1 ∈ G such that xx−1 = x−1x = e.

Roughly, a differentiable manifold is a space that locally
looks like an Euclidean space, but globally may be curved
in some way (like a smooth surface). The tangent space
to G at the point g ∈ G, denoted as TgG, is an Euclidean

space of the same dimension of G. When an inner product
a · b ∈ R, a,b ∈ TgG is defined in the tangent space of
G at each point g, such that it varies smoothly from point
to point, the manifold is called Riemannian. Distances or
angles are well defined in Riemannian manifolds.

The tangent space of a Lie group G at the identity e,
TeG, is called Lie algebra g.

The length of a curve γ(t) ∈ G, t ∈ R, between
two points γ(a) and γ(b) is Lb

a(γ) =
∫ b

a
‖γ′(t)‖dt,

where the derivative γ′(t) ∈ g and the norm is given by√
γ′(t) · γ′(t), and · is de Euclidean inner product. The

distance between two elements x, y ∈ G is defined as the
length over the geodesic (shortest path between two ele-
ments of G) that passes through both elements: d(x, y) =
minγ(Ly

x(γ)). This metric is called intrinsic or Rieman-
nian. The extrinsic metric is the Euclidean distance between
points when the manifold is embedded in a larger Euclidean
vector space.

For every v ∈ g, there is a unique geodesic γ(t) ∈ G
that starts at the identity γ(0) = e and has initial velocity
v: γ′(0) = v . This geodesic is defined by means of the so
called exponential map g : exp(v) → G (γ(t) = exp(tv)
is a geodesic with γ(0)′ = v and γ(0) = e). Straight lines
in g that pass through the origin are mapped to geodesics
in G passing through the identity e. Also, the angle at the
identity between two geodesics intersecting with velocities
u and v is θ = cos−1(u · v) . The log map G : log(x) → g
is the inverse of the exponential map.

The distance from the identity e and any element x ∈ G
is equal to the Euclidean distance, in the tangent space, from
the origin to v = log(x):

d(e, x) = ‖ log(x)‖, (1)

and the distance between any two elements x, y of G is:

d(x, y) = d(e, x−1y) = ‖ log(x−1y)‖. (2)

Note that because x and y don’t commute in general, ex-
pressions like log(xy) = log(x) + log(y) or exp(u + v) =
exp(u) exp(v) are not valid.

Also note that the distances ‖ log(x−1y)‖ =
‖ log(yx−1)‖ = ‖ log(y−1x)‖ = ‖ log(xy−1)‖ are
all equal, but the vectors log(x−1y), log(yx−1), log(y−1x)
and log(xy−1), in general are different. The vector in
g that is the log of the geodesic segment x → y is
dlx→y = log(yx−1). This is called left invariant metric,
because it is invariant under left multiplication: dlzx→zy =
log((zx)−1zy) = log(x−1z−1zy) = log(x−1y) = dlx→y .

2.2. Principal Geodesic Analysis (PGA)

Once distance and angles are well defined in the mani-
fold, mean and variance can be computed.



The Fréchet mean of a set of elements {xi}N
i=1 ∈ G, is

defined as the point µ ∈ G which minimizes the sum of
squared distances d2(µ, xi):

µ = arg min
µ∈G

N∑
i=1

d2(µ, xi). (3)

This definition is inspired in the Euclidean mean definition.
Unlike in Euclidean space, the mean in Riemannian man-
ifolds may not exist, or be unique. Luckily, for localized
enough data the Fréchet mean exists, is unique and can be
computed iteratively as [15]:

µk = µk−1 exp

(
1
N

N∑
i=1

log(µ−1
k−1xi)

)
. (4)

The starting point was µ0 = e in this work, but alternative
initialization can be used [15].

Analogously, the Fréchet variance of a set of points is
also defined analogously to the Euclidean case:

σ2 =
1
N

N∑
i=1

d2(µ, xi). (5)

Fletcher [11] defined Principal Geodesics (PG) as suc-
cessive geodesics γl(t) ∈ G, l = 1, 2, ..., that passes
through the mean (γl(0) = µ), for which the data projected
on them presents maximal variance, and are orthogonal to
all the previous ones. In other words, PG are a set of or-
thogonal ordered geodesics such that the data projected on
the first P ones maximize the variance for any P . The pro-
jection on a geodesic γ(t) = µ exp(tv) is defined as

pγx = arg min
y∈γ

d2(x, y)1. (6)

The projection operator can not be computed with a
closed formula, nevertheless an approximation can be done
when x is in a small neighbourhood of the mean [11]. The
approximation is the following: log(x−1y) = log(x̃−1ỹ) ≈
log(ỹ) − log(x̃), where x̃ denote the residual x̃ = µ−1x,
∀x ∈ G. With this approximation, and in terms of the resid-
uals, the projection operator (6) becomes:

pγ̃ x̃ ≈ arg min
ỹ∈γ̃

‖ log(x̃) − log(ỹ)‖2, (7)

As y lies in the geodesic, it can be written as y = γ(r) =
µ exp(rv), for some r. And so, log(ỹ) = log(µ−1y) = rv,
where r ∈ R and v · v = 1. Finding the minimum in
equation (7) is the same that finding arg min

r∈R

‖u − rv‖2,

with u = log(x̃). The minimum is obtained when r = u ·v,
and finally equation (7) becomes:

pγ̃ x̃ ≈ ỹ = exp(rv) = exp ((u · v)v) . (8)

1Again, this may not exist, or be unique, if elements are not close
enough to the mean.
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Figure 1. Schematic view of a group G and its tangent space at
identity TeG. The antipodal point of the identity, indicated as e,
is called cut locus of e, and it is the point where all the geodesics
passing through e meet. All the points in TeG for which their
images by exponentiation are e are the circle of radius π (log e).
Inside this circle, the exp function is a bijection. The points NP
and SP are the north and south poles respectively, indicated only
for clarity. Pγ̃ x̃ is the projection of x̃ in the geodesic γ̃ (equator in
the figure), and the approximation (8) is indicated with a ×.

Figure 1 shows schematically the error done with the ap-
proximation in (7) when the manifold is a 2-sphere in 3D.
In general, the error tends to zero for data close enough to
the identity, and for small angles (when x̃ ≈ pγ̃ x̃).

The amount of variance projected on γ̃ is

σ2
γ̃ =

1
N

N∑
i=1

d2(e, pγ̃ x̃i) =
1
N

N∑
i=1

(ui · v)2, (9)

with ui = log(µ−1xi). Therefore finding the geodesics
γk(t) that maximizes projected variance is the same as find-
ing vectors in g that maximizes Euclidean projected vari-
ance. By computing usual Principal Component Analysis
of the logarithm of residuals ui, a set of orthonormal prin-
cipal components vl ∈ g are obtained. The corresponding
PG are given by γl(t) = µ exp(tvl), and are also orthogo-
nal at the mean. The projected variance on each geodesic is
equal to the variance of the PCA modes.

2.3. Similarity group

The similarity group Sim(3) is the set of similarity
transformations in 3D. A similarity transformation T (·) ap-
plied to a 3D point is:

x′ = T (x) = sRx + d, (10)

where R ∈ SO(3) (3 × 3 orthogonal matrix with deter-
minant one), s ∈ R

+, and x′,x,d ∈ R
3. The composi-

tion of two similarity transformations T1 and T2 is given
by T3(x) = T2(T1(x)), with the following parameters:
s3 = s2s1, R3 = R2R1 and d3 = s2R2d1 + d2.



A matrix representation of similarity transformations can
be achieved by using projective geometry:

X = (x, 1) = (x, y, z, 1)T . (11)

The transformation is then written as T (X) = TX, with:

T =
[

sR d
0T 1

]
. (12)

The set of matrices of the form (12) form a Lie group
with matrix multiplication. With this matrix representation
of the group, the composition of similarity transformations
can be written as matrix multiplication (T3 = T2T1). Ex-
ponential and logarithm mappings are computed as standard
matrix exponential and logarithm.

It can be easily checked that the following exponentials
give the group elements that span Sim(3):

exp




0 0 0 x
0 0 0 y
0 0 0 z
0 0 0 0


 =




1 0 0 x
0 1 0 y
0 0 1 z
0 0 0 1


 (13)

exp
[

log sI3 0
0T 0

]
=
[

sI3 0
0T 1

]
(14)

exp




0 −rz ry 0
rz 0 −rx 0
−ry rx 0 0

0 0 0 0


 =

[
R 0
0T 1

]
(15)

where

R = exp(A) =
{

I, if a = 0,

I + sin(a)
a A + 1−cos(a)

a2 A2, if a �= 0,
(16)

a =
√

r2
x + r2

y + r2
z and A is the 3×3 upper left submatrix

of left matrix in (15). The rotation parameters rx, ry and rz

(components of the skew symmetric matrix A) define the
rotation axis by means of r = (rx, ry, rz), and the rotation
angle as φ =

√
r · r.

The complete set of parameters that defines a similarity
transformation in the tangent space sim(3) is

b = [rx ry rz x y z l]T , (17)

with l = log s.
The set of 4 × 4 matrices {Bp}7

p=1, with components:

[B1]3,2 = [B2]1,3 = [B3]2,1 = 1,

[B1]2,3 = [B2]3,1 = [B3]1,2 = −1,

[B4]1,4 = [B5]2,4 = [B6]3,4 = 1,

[B7]1,1 = [B7]2,2 = [B7]3,3 = 1
otherwise 0, (18)

form an orthogonal basis of the Lie algebra sim(3), with
inner product (C · D) = tr( CDT ). [A]i,j denotes the ith
and jth component of matrix A.

Any similarity transformation can be written as:

T(b) = exp(
∑

p

[b]pBp), (19)

and any geodesic as T(tb), for b fixed, and t running in R.

2.4. Pose model

The similarity transformation that takes an object from
a reference frame pose A to a pose B is well defined and
usually easy to compute from the object representation. But
if the objects in A and B are different, we need to define
when two object has the same pose.

If correspondence between the points on the surface of
different objects are given, we define the similarity transfor-
mation that takes an object Si to the same pose of a different
object Sj as:

Ti→j = arg min
T∈Sim(3)

D2(Sj , T (Si)), (20)

where D2 is the sum (integral in the case of continuous
shape representation) of square distances from correspond-
ing points. For point distribution models, transformation
(20) can be computed with a closed form formula [14].

In order to build a statistical pose model, a template
shape is required. The template shape was selected as the
mean shape, defined as:

R = arg min
S∈Shape space

N∑
i=1

D2
p(Si, S), (21)

where D2
p is the squared Procrustes distance, i.e. the dis-

tance D2 after Procrustes alignment:

D2
p(Si, S) = min

T∈Sim(3)
D2(Si, T (S)). (22)

The pose of each shape Si is characterized by the simi-
larity transformation Ti that best fit mean shape R into Si:

Ti = arg min
T∈Sim(3)

D2(Si, T (R)), (23)

as shown in Figure 2. Finally, the pose model is obtained
by applying PGA defined before to the set of Ti.

It is worthy to note that according to (21) the pose of
the reference shape R can be chosen arbitrarily. The orien-
tation and location of R have no consequences on PGA,
but the size of R will control the relative magnitude be-
tween translation and rotation of residuals. It is well known
that it is important to normalize multivariate data in order
to obtain all parameters in commensurable magnitudes be-
fore computing SVD. By setting the mean radius of R to
unity, boundary displacements driven by rotations of R will
be equal to rotation angle in radian units.
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Figure 2. Transformation Ti takes the mean shape R from the ref-
erence frame to shape Si in world frame.

3. Multi-object pose model (MOPM)

Given a data set consisting of N instances of complex
systems with L objects for each instance Si,l, the set of NL
pose transformations that takes the L reference objects Rl

to the instances Si,l are given by

Ti,l = arg min
T∈Sim(3)

D2(Si,l, T (Rl)). (24)

Ti,l denotes the matrix representation of Ti,l.
As the similarity transformations commute among dif-

ferent objects, the group that describes the whole set of
transformations Ti,l is the direct product of the L similarity

groups: Sim(3)L =
L∏

i=1

Sim(3) = Sim(3) × Sim(3) ×
...×Sim(3). Its Lie algebra is given by the 7L dimensional
Euclidean space consisting of L copies of sim(3).

The logarithm of an element Ti =
(Ti,1,Ti,2, ..,Ti,L) ∈ Sim(3)L is log Ti =
(log Ti,1, log Ti,2, · · · , log Ti,L). The exponential of
an element Ui = (Ui,1,Ui,2, · · · ,Ui,L) ∈ sim(3)L is
exp Ui = (exp Ui,1, exp Ui,2, · · · , exp Ui,L). Similarly,
products and inversions are performed component wise.

PGA in Sim(3)L is computed in an analogous way to
PGA in Sim(3): the multi-object pose mean is M =
(M1,M2, ..,ML), being Ml the mean of Ti,l (averaging
in i = 1, .., N ); the residuals Ui are given by

Ui = log(M−1Ti). (25)

In terms of the orthonormal basis Bp in (18), residu-
als can be written as the 7L dimensional vector ui =
(uT

i,1,u
T
i,2 · · ·uT

i,L)T where

ui,l = (Ui,l · B1,Ui,l · B2, · · · ,Ui,l · B7)T . (26)

The residuals of each structure ui,l can be weighted with
positive scalars αl in order to emphasize the relative impor-
tance of some objects.

SVD analysis of the residual matrix formed by ui

provides the direction of the principal geodesics vk =
(vT

k,l,v
T
k,2, · · · ,vT

k,L)T for each mode k as well as the cor-
responding singular values σk.

The principal geodesics are given by:

Gk(t) = (M1 exp(tVk,1/α1),M2 exp(tVk,2/α2), ...
ML exp(tVk,L/αL)), (27)

being Vk,l =
∑

p[vk,l]pBp

4. Experiments and results

4.1. Data set and preprocessing

Experiments were performed on a data set of N=18 brain
MRI studies from normal subjects available at Internet
Brain Segmentation Repository [1] from Massachusetts
General Hospital. Seven brain structures from both hemi-
spheres (L=14 objects in total) were selected for this study:
lateral ventricle, thalamus proper, caudate nucleus, puta-
men, pallidum, Hhppocampus and amygdala.

For each object, a 3D point distribution model (PDM)
with point correspondence was built from the binary seg-
mentation images available at IBSR according to the fol-
lowing procedure. A dense mesh surface representation
was obtained by thresholding an isosurface representation
of the binary image. Point correspondence was estimated
by means of an iterative non-rigid registration procedure
applied to a template structure based on the Robust Point
Matching (RPM) algorithm [4]. The initial template was
a cloud of points uniformly distributed on a sphere, where
the number of points were proportional to the mean surface
area of each object.

After the PDM representation, the mean shape of each
object was obtained as an iterative process of Procrustes
alignment (22) and point averaging. This procedure provide
the pose transformation for each instance and object (24).
Fig. 3 illustrates the mean of the PDM for each structure.

4.2. Multi object pose model of brain structures

Similarity transformations defined by the MOPM con-
sists of a mean pose and a set of pose variation modes. The
mean pose of each object l was iteratively computed follow-
ing (4), where the generic group element xi was replaced by
Til. The mean pose is illustrated in Fig. 3.

Pose modes were computed by means of SVD of the
residual matrix formed by the set of vectors in (25), where
the scaling factors αl were selected proportional to the mean
volume. The pose modes are illustrated in Fig. 4-6 in the in-
terval (−3 σ, 3 σ). This range is a bit exaggerated in order to



a) b)

c) d)
Figure 3. Brain structures: lateral ventricle; thalamus proper; cau-
date; putamen; pallidum; hippocampus; amygdala. a) bottom
view; c) front view; b) oblique view (only left hemisphere struc-
tures plus right ventricle and caudate nucleus are shown); d) lateral
view.

best visualize variations. Brain structures have been packed
into three groups for a better visualization: lateral ventricle
and caudate nucleus in group A; thalamus, putamen and pal-
lidum in group B; and hippocampus and amygdala in group
C.

Panels a), c) and d) in Figs. 4-6 illustrate the effect
of pose variations spanned by the first mode on the mean
shape. Solid surfaces represent mean shape transformed by
G1(3σ1) in (27) and transparent surfaces by G1(−3σ1) The
color (RGB components) of the surface for each object rep-
resents the relative importance of rotation (red), translation
(green) and scaling (blue) parameters.

Panels b) show the values of the 7 pose parameters cor-
responding to the arguments of the exponential functions
in (27), i.e. 3σ1v1,l/αl for each l-th object. Solid lines
represent left hemisphere objects, while dashed lines refer
to right hemisphere objects. The coordinate axis were ori-
ented as follows: x axis was set to right-left orientation; y
axis from front to back and z axis as down-up orientation.
In this plot, rotation parameters in y and z direction, and
translation parameter in x direction, were sign reversed for
right objects. In such way, the paired lines in panel b) corre-
sponding to transformations with hemispherical symmetry
will be similar.

An additional representation of the seven pose parame-
ters is illustrated by means of a set of spheres, vectors and
segments located at the center of mass of each structure.
The magnitude of scale parameter |l| = | log s| is repre-
sented as the sphere radius and the sign as sphere color:
yellow for positive scalings or dilations and red color for
contractions. The remaining 6 pose parameters are repre-
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Figure 4. First pose mode of structures in group A: lateral ventricle
and caudate nucleus. a) Bottom view. b) Pose parameters. c) Front
view. d) Lateral view. More details are given in the text.
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Figure 5. First pose mode of structures in group B: thalamus
proper,putamen, pallidum. a) Bottom view. b) Pose parameters.
c) Front view. d) Lateral view. More details are given in the text.
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Figure 6. First pose mode of structures in group C:hippocampus;
amygdala. a) Bottom view. b) Pose parameters. c) Front view. d)
Lateral view. More details are given in the text.
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Figure 7. Second pose mode of structures in group A: lateral Ven-
tricle and caudate nucleus. a) Bottom view. b) Pose parameters. c)
Front view. d) lateral view. More details are given in the text.
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Figure 8. Second pose mode of structures in group B: thalamus
proper, putamen, pallidum. a) Bottom view. b) Pose parameters.
c) Front view. d) Lateral view. More details are given in the text.

sented by vectors. Red color vectors are use for rotation
parameters, while green vectors for translation. Vector di-
rection denotes either rotation axis or translation direction.
Vector magnitude denote either rotation angle or translation
magnitude. Additionally a blue and black band is generated
by applying the geodesic transformation to a segment lo-
cated at the center of mass. The segment is oriented along
the rotation axis and its length is equal to the rotation mag-
nitude. The geodesic runs from −6σ (black color) up to 6σ
(blue color) for illustration purposes.

It is worthy to note that the orientation of the pose mode
is just a matter of convention, and therefore what is relevant
is the relative signs and magnitude among different pose
parameters.

The second mode is illustrated in Fig. 7– 9.
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Figure 9. Second pose mode of structures in group
C:hippocampus; amygdala. a) Bottom view. b) Pose pa-
rameters. c) Front view. d) Lateral view. More details are given in
the text.

4.3. Discussion

The dominant modes of the MOPM explain most of the
pose variance within the training set. The first mode shows
an important hemispheric symmetry on most of the subcor-
tical nuclei and lateral ventricles. This is clearly seen on
panel b) of Fig. 4-6, where paired solid and dashed lines
are quite similar. Accordingly, surface colors from paired
objects in panels a) c) and d) are also similar.

The objects with the largest displacements are the lateral
ventricles (see displacement of solid and transparent sur-
faces in panels a), c) and d) as well as the magnitude of
lateral ventricles pose parameters in panel b) of Fig. 4). Al-
though the pose parameters of the amygdala (magenta lines
in panel b) of Fig. 6) have similarly large values, the amyg-
dala displacement is relatively small (see panels a) c) and
d) in Fig. 6) because pose parameters in panel b) must be
weighted by the amygdala volume αl.

Lateral ventricles also experience an important contrac-
tion while the rest of the structures remain mainly unscaled.
It can be also seen that some structures have a correlated
displacement (such as the hippocampi tails, posterior part
of the thalami and lateral ventricles tails), consisting of a
strong lateral displacement getting farther away from mid-
sagittal plane, and a slight forward and upward displace-
ment.

In addition, the frontal part of most nuclei (head of hip-
pocampi, head of caudate nuclei, front part of putamen and
pallidum) and lateral ventricles experience a backward dis-
placement.

The second mode explains a much more slight displace-
ment of the lateral ventricles than in the first mode. This
time the displacement is larger in the right ventricle, pro-



viding an important asymmetry component. In contrast, the
remaining structures have a symmetric behavior.

The body of the right lateral ventricle moves to the right
lateral side at the same time that a slight dilation.

On the other hand, the structures in Group B moves sym-
metrically to the lateral sides. Both thalami move back-
wards while putamen and pallidum forward. The whole dis-
placement can be explained as a radial movement outwards
at the same time as a structure contraction. Therefore, the
surrounding white matter enlarges.

The tail of the hippocampi move backwards, in a similar
way than thalami, while the head of the hippocampi con-
tracts. The amygdalae follow the movement of the heads of
the hippocampi and remain unscaled.

It should be kept in mind that all the pose information
provided by the MOPM will depend on the accuracy of the
similarity transformations estimated from the training set.
The two most relevant error sources are segmentation er-
rors and correspondence estimation. While the former will
be significantly larger in some structures with low contrast
such as hippocampi, the latter will mainly affect to struc-
tures with a large anatomical variability, such as the lateral
ventricles.

5. Conclusion

In this work a methodology to build statistical models
of similarity transformations was proposed. As similarity
transformations does not live in an Euclidean space, dis-
tances, angles, and statistics (namely averages and modes
of variation) were defined within the Lie group framework.

This methodology provides the required tools in order
to introduce multi-object pose models (MOPM). These sta-
tistical models learn from a training set of data previously
segmented, mean and variation modes of the relative pose
among different objects belonging to a multi-object system.

We expect that MOPM will provide a valuable a priori
information about relative location, orientation and scale of
a set of objects, which may be of great help in medical im-
age segmentation and registration. In addition pose param-
eters may be useful as neuroanatomical markers of neuro-
logical diseases.
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