Bandwidth Efficiency Improvement of Online Games
by the use of Tunneling, Compressing and
Multiplexing Techniques

Jose Saldana, Jenifer Murillo, Julian Fernandez-Navajas, Jos¢ Ruiz-Mas, José 1. Aznar, Eduardo Viruete Navarro
Communication Technologies Group (GTC) — Aragon Inst. of Engineering Research (I3A)
Dpt. IEC. Ada Byron Building. CPS Univ. Zaragoza
50018 Zaragoza, Spain
{jsaldana, jenifer.murillo, navajas, jruiz, jiaznar, eviruete} @unizar.es

Abstract—The enterprises that develop online games need
hardware and bandwidth resources in order to give a good
service to the users. These games produce a high rate of small
UDP packets from the client to the server, so the overhead is
significant. The actions of the players have to be propagated to
the server and to the rest of the players in a very short time, so
network delays are very critical. This work presents a method
that saves bandwidth, by the addition of a local agent which
queues packets, compresses headers and uses a tunnel to send a
number of packets into a multiplexed one. The behaviour of the
system has been studied for IPv4 and IPv6, showing that
significant bandwidth savings can be achieved. For certain titles,
up to 38% of the bandwidth can be saved for IPv4. This
percentage grows up to 54% for IPv6, as this protocol has a
bigger overhead. The cost of these bandwidth savings is the
addition of a new delay, which has an upper bound that can be
modified. So there is a tradeoff: the bigger the added delays, the
bigger the bandwidth savings. On the other hand, the tests show
that if the number of players is big enough, the added delays can
be acceptable in terms of user’s experience.

Keywords-gaming; delay; multiplexing; compressing;
measurement; network games; Quality of Experience; First Person
Shooter

L.

Online gaming via Internet is a service that grows quickly
worldwide. There are some titles which have millions of users,
so the enterprises that develop the games have to face a
difficult problem whenever a new title is released: they need
hardware and bandwidth resources in order to avoid the
saturation of their infrastructure. As the success of a new title is
not very predictable, they may have to over-provision these
resources, because the users that buy the game have to receive
a good service. In [1] a study of the behavior of the gamers was
presented, and the authors concluded that they are very difficult
to satisfy: if they have connection problems, they usually leave
and never return, and they do not tend to be loyal to a server.

INTRODUCTION

Two of the most popular genres of online games are
MMORPGs (Massive Multiplayer Online Role Playing
Games) and FPS (First Person Shooters). Reference [2] studied
the traffic of MMORPGs, concluding that they have some

This work has been partially financed by CPUFLIPI Project (MICINN
TIN2010-17298), MBACToIP Project, of Aragon I+D Agency and Ibercaja
Obra Social, and NDCIPI-QQoE Project of Catedra Telefonica, Univ. of
Zaragoza.

SPECTS 2011

227

characteristics like periodicity, locality, and self-similarity.
Another conclusion is that they have less bandwidth and real-
time requirements than FPS.

In FPS the actions of the players have to be propagated to
the server and to the rest of the players in a very short time, so
network delays are very critical. These games produce a high
rate of small UDP packets (typically some tens of bytes) from
the client to the server, so the overhead caused by IP/UDP
headers is significant. Server to client packets are typically
bigger.

There are some scenarios where many players of the same
game share the path from the access network to the game
server: e.g. Internet Cafés, which are very popular in many
countries, frequently have computers able to run online games,
and gamers usually go there to play in groups (Fig. 1a and 1b).
The traffic between servers of the same game is another
scenario where the packets of many players share the same
path (Fig. 1c¢).

The traffic of these groups of players could be compressed
and multiplexed in order to save bandwidth, taking into
account that the access network is usually the bottleneck. And,
in case of DSL, the uplink has normally less bandwidth than
the downlink. By the addition of a local agent which queues
packets, compresses headers and sends multiple packets into a
bigger one, some bandwidth saving could be achieved, at the
cost of adding new delays, mainly caused by the retention time
at the queue.

In order to avoid workload to the central game server, some
proposals [3], [4] included network elements (proxies) next to
the access network. In contrast, the local agent proposed in the
current work could be distributed with the game application, in
the same way as local servers are distributed with certain titles.
The tunnel from the clients to the server could either be created
by a dedicated machine (Fig. 1a), or by the computer of a
player (Fig. 1b), thus avoiding the cost of a new machine.

At the other side, the server would have to implement the
demultiplexer and decompressor, which would imply some
processing capacity, and space to store the context of each
flow, i.e. the information necessary to rebuild the compressed

headers, (some tens of bytes, as we will see [5]). This will not
imply a scalability problem, as the server already stores the
state of the game for each player. On the other hand, the
savings in terms of bandwidth and packets per second may also
be beneficial for the server.

If the number of players is big enough, it can be expected
that, while adding small delays, a big number of packets could
be multiplexed into a bigger one. Bandwidth saving not only
affects the gaming traffic, but it can also be beneficial for the
background traffic which shares the access with it.
Furthermore, multiplexing has another advantage: the number
of packets per second the router has to manage will be reduced.

There exist other applications and scenarios where many
real-time flows share the same path, e.g. VoIP trunking; and
the use of multiplexing and compressing techniques has been
proposed and even standardized [6] for them. Many online
games present similar traffic patterns, generating a high rate of
tiny packets, and thus presenting a big overhead. The novelty
of the present work is the use of similar multiplexing
techniques for these games’ traffic, in which significant gains
can also be obtained, without losing quality.

Access

Internet

Local network
agent

Game Server

%@‘j

Players

@: network
>

Player and
local agent

Internet Game Server

Players

Figure 1. Scenarios where many players share the same path: a) players
sharing an access network, using a local agent. b) players using the computer
of another one in order to create the tunnel c¢) Traffic between proxy servers of
the same game. Thick lines represent the traffic of a number of players.

SPECTS 2011

We will mainly study the scenarios presented in Fig. 1a and
1b, but most of the conclusions can also be applied to the third
one (Fig. 1¢c). Only client to server traffic is studied, as bigger
savings can be obtained and in many scenarios (e.g. DSL) it is
transmitted via the most restrictive link. We have to measure
the impairments on the parameters that determine the quality
experienced by users, in order to properly tune the parameters
that define the tradeoff between bandwidth saving and quality.

Although this technique could be applied to other game
genres, we will use FPS traffic in this work, as these games
have very stringent real-time requirements. The subjective
quality mainly depends on delay and packet loss [7]. The
System Response Time (SRT: the time the system needs to
detect a user event, to process it and to send the updated game
state to the local output device), has to be maintained under a
certain value.

The rest of the work is organized as follows: Next section
presents the related works. Section III explains the proposed
tunneling, compressing and multiplexing method. Section IV
details the results. The paper ends with the conclusions.

II. RELATED WORKS

A. Online Gaming Traffic

There is a significant amount of literature regarding to the
traffic of online games. We will only consider active traffic, i.e.
the one generated once the game has started. This traffic
presents two different behaviors: first, the client application is
in charge of communicating the actions of the players to the
server, using small packets with a small period. Second, the
server calculates the new state of the game and broadcasts it to
all the players, using bigger packets, whose size depends on the
number of players. Ref. [8] presented a method to extrapolate
server to client traffic, obtained from empirical measurements.
They obtained size distributions for an N-player game, from
measured traffic of 2 and 3 players. In that work it is also said
that the client to server size distribution is independent of the
number of players.

In [9] a 500 million packet trace of Counter-Strike was
analyzed, and a conclusion was that the design of the game
targets the saturation of the bottleneck, which is the last-mile
link. Also in [10] the characteristics of many online games
were analyzed, in terms of packet size and inter-packet time. In
[11] a survey of different traffic models for 17 popular games
can be found. These studies show that these games generate a
high rate of small packets. This behaviour produces a big
overhead, so bandwidth savings can be achieved by means of
header compressing and multiplexing.

In [9] it is also said that the main bottleneck is frequently
the number of packets per second that a router can manage, and
not the bandwidth of the access line. Routers are usually
designed for big packets, and can experience problems when
managing bursts of small packets.

B. Infrastructure for Supporting Online Games

The problem of the infrastructure that supports the games
has also been studied in some works. From the point of view of

228

the user, Ref. [12] presented an algorithm to allow the client to
adaptively select the best server for a certain online game. This
could allow a group of users to play in the same server, and use
multiplexing techniques.

From the point of view of the server, there are two
architectures to support this service: centralized and
distributed. In the first one, there is a server that maintains the
state of the game and distributes it to the players. The problem
is that the server represents a bottleneck. In distributed
architectures [13] there is no need for a central server, as the
players exchange the information. But this architecture is
generally not used in commercial games.

The problem of the scalability of the required infrastructure
for these games was also studied by Mauve et al [3], and they
proposed the use of proxies in order to provide congestion
control, robustness, reduce delays and avoid cheating. Some
proxies could be distributed next to the players, avoiding some
workload to the central server. Ref. [4] also proposed the use of
booster-boxes, which would be next to the router and could
know the state of the network, being able to give network
support to the applications. As said in the introduction, the
solution proposed in the current work could even run in the
machine of a player.

C. Compressing Algorithms

Some IETF standards that compress headers were
developed many years ago: first, VJIHC [14] presented a
method to compress IP/TCP headers. Some years later, IPHC
[5] was also able to compress UDP and IPv6 headers. At the
same moment, CRTP was presented in order to compress
IP/UDP/RTP headers, and some years later it was enhanced
and named ECRTP. But these two protocols are not suitable for
compressing gaming traffic, as it is not RTP. There was an
interesting proposal [15] of using a protocol similar to RTP for
online gaming. An advantage of this proposal is the possibility
of reusing generic services, avoiding the need of implementing
them for every game. But nowadays commercial games mainly
use IP/UDP packets.

These algorithms compress headers in a hop-by-hop way,
using the high redundancy of IP, TCP and UDP header fields in
order to avoid sending some of them. A confext is defined,
which is first transmitted from the sender to de destination with
the first headers. The different header fields are classified into
non-change, random, delta and inferred. The first ones are only
sent in full headers. Random headers are sent without
compression, while delta ones are codified using less bytes
than the original size of the field. Finally, inferred headers can
be obtained from the fields of other layers, e.g. the length of the
packet can be obtained from the level 2 corresponding field.

ROHCV2 [16] is a more recent standard, which is also able
to compress [P/UDP/RTP headers and IP/UDP ones. It reduces
the impact of context desynchronization, by providing a
feedback mechanism from the decompressor to the compressor.
It uses three different compression levels, which correspond to
operation modes: Initialization and Refresh, First Order and
Second Order. In the last level, the header can be compressed
to just one byte [17]. The use of these advanced techniques

SPECTS 2011

229

makes the implementation more difficult [18], and may add
bigger processing delays.

III. COMPRESSING AND MULTIPLEXING METHOD

In this section we will explain the proposed compressing
and multiplexing method. A study of the bandwidth efficiency
which can be achieved is also presented.

A. Tunneling, Compressing and Multiplexing Algorithm

In RFC 4170 [6], the IETF approved Tunneled Compressed
RTP (TCRTP) in order to compress and multiplex RTP flows.
First, ECRTP compressing is applied, and many packets are
included into the same one using PPPMux. Finally, a L2TP
tunnel is used in order to send the whole multiplexed packet
end to end.

We have used a similar scheme, but in our case the traffic is
not RTP, so we can only compress IP/UDP headers using
IPHC or ROHCv2. We will call this method Tunnel-Compress-
Multiplex (from now TCM). Fig. 2 shows the protocol stack
and the structure of a TCM packet. It can be divided into the
next parts:

e Common Header (CH): Corresponds to the IP, L2TP
and the PPP headers.

e PPPMux header (MH): It is included at the beginning
of each compressed packet.

e Reduced header (RH): It corresponds to the [P/UDP
compressed header of each original packet.

e Payload (P): It is the UDP payload of the original
packets generated by the application.

B. Theoretical Analysis of the Proposed Method

We will next make an analysis of the bandwidth saving
which can be achieved by the use of this technique. We assume
that the multiplexed packet size will never be above 1500
bytes, which is certain for the traffics of this work.

As said in the introduction, packet delay has a very big
importance for this service. So we have used a multiplexing
policy that maintains packet delay under an upper bound. In the
multiplexer it is defined a period, named 7, and a multiplexed

Payload Payload
UDP
Compr. Header Compr. Header
- a P
PPP Mux
PPP
L2TP
P
PP }
L2TP PPP | Compr. PPP | Compr.
‘ IP header header | | Mux |Header | Favioad Mux | Header | Favioad
CH. »4—MH-—»-4-RH-»4—P—>» 4-MH-»«RH-»>4—P—»

Figure 2. TCM protocol stack and scheme of a multiplexed packet.

Native
traffic

AT LIl

Multiplexed) ~> . . ‘
traffic i R i o \

Figure 3. Behavior of the multiplexing policy.

period period period period

packet is sent at the end of each period, including all the
arrived ones (Fig. 3). There are two exceptions: if there is no
packet to multiplex, nothing will be sent; and if there is only
one packet, it will be sent in its native form, as the use of a
tunnel would make it be bigger.

We will refer to the packets generated by the application as
native, in contrast to multiplexed (mux) ones. With this policy,
the average retention delay will be 7/2, and its upper bound
will be 7.

An interesting parameter is the bandwidth relationship
BWR, which is the division of mux and native bandwidths. We
will denote the number of arrived packets in a period as k. NH
denotes the size of an IP/UDP header. In order to obtain BWR,
we will first calculate the number of bytes sent in a period
when multiplexing is applied, so we have to distinguish the
case of having one packet:

Siz€y = Pr (k=1)(NH + E [P]) +

+ Pr(k >1) [CH+E[Kk>1](MH+E[RH]+E[P])] (1)

Next, the expected value of the size of the native packets
arrived is:

Sizenative = E[k] (NH + E [P]) (2)

And dividing (1) and (2) we obtain BWR:

BwR = =D b cH +
E[k] E[kI(NH + E[P))

Elk|k>1] MH + E[RH]+ E[P]
E[k] NH + E[P]

+Pr(k>1) 3)

The first term is caused by the decision of not multiplexing
when having only one packet. The second one expresses how
the common header is shared by the whole packet. It becomes
smaller as the number of multiplexed packets increases. The
third term depends on the compressing algorithm, and in the
average packet size generated by the application.

So, if we have a big number of users, or a big period, the
number of packets will be big, and the first and second terms
will become negligible. Regarding to the third one, Pr(k>1)
will almost be 1, and the same will happen to Efk|k>1]/E[k].
So we can obtain the expression for an asymptote for BWR:

SPECTS 2011

MH + E[RH]+ E[P]
NH + E[P]

BWR,= “4)

We observe that the smaller the value of E/P/, the smaller
the value of the asymptote. So the presented technique should
have a good behavior in applications that generate a high rate
of small packets, as FPS games do. Logically, it is expected
that the bigger the number of players, the better the behavior,
as the same number of packets can be multiplexed with less
added delays. And the increase of 7 will also be beneficial for
BWR, but we can not increase it indefinitely, as players are
very sensitive to delay.

On behalf of clarity, we will not include here the
calculation of Efk|k>1], Pr(k=1) and Prk>1). These
calculations are included in the Appendix. As shown there,
they may vary depending on the behavior of each game.

In order to get numerical and graphical results, we will now
use the real parameters of some commercial games, and the
ones used in the proposed protocols:

e NH: 28 bytes for IPv4/UDP and 48 bytes for
IPv6/UDP.

e CH: 25 bytes for IPv4: 20 correspond to IP, 4 to L2TP
and 1 to PPP header. For IPv6, CH=45 bytes.

e MH: 2 bytes, corresponding to PPPMux.

e E[P]: The value of the UDP payload depends on the
application used.

e E[k]: The number of packets per second generated by
the N players of the game.

e E[/RH]: In this example, to be in the worst case, we
have considered [IPHC compressing UDP headers to 2
bytes, by using only 8 bits for the CID field, and
avoiding the optional checksum. IPv4 and IPv6
headers can also be compressed to 2 bytes. So we will
consider 4 bytes average for compressed headers and
28 or 48 bytes for full headers, which are sent every 5
seconds (the default F MAX TIME parameter of
IPHC).

Using these values, we obtain the values shown in Table 1.
They are the values of the asymptote, i.e. the best BWR that can
be achieved if the number of users and the period are big

TABLE L. BWR ASYMPTOTE VALUES FOR DIFFERENT GAMES
Game Engine E[P] s li;’,;l;” l;;,’/vl;”
Unreal T 2003 Unreal 2.0 29.5 25 62% 46%
Quake IIT Id Tech 3 36.15 93 65% 50%
Quake IT Id Tech 2 37 26.38 66% 51%
Counter Strike | GoldSrc 41.09 | 24.65 68% 53%
Halo 2 Halo2 432 25 69% 54%

230

enough. They are obtained for IPv4 and IPv6. We have
selected some popular games, and the concrete values have
been obtained from [10] and [11]. The values for Halo 2 refer
to a console with only one user [19]. The value of A for Quake
3 is the one obtained with the fastest graphic cards.

The obtained values are significant. All the games allow
bandwidth savings above 30% for IPv4, and this saving can
grow up to 54% if IPv6 is used in some titles.

In order to have a better idea of the system benefits, some
graphs will next be presented, to illustrate the behavior of the
BWR not only in the asymptotic value, but also for different
users and periods. As we have to depict the graphs for a
concrete game, we have selected Half Life Counter Strike 1,
due to its popularity and the availability of many studies of its
behavior [9], [20]. In Fig. 4a we have depicted BWR for IPv4
as a function of the number of players and the period. If we fix
the number of players, we obtain Fig. 4b and if we fix the value
of the period, we obtain Fig 4c. The asymptotic behavior can
be observed for both parameters, so the most interesting zone is
when the bandwidth relationship between 0.70 and 0.75. As an
example, if we look at the 20 players graph of Fig. 4b, once the
value of 0.75 is reached, the increase of the delays in order to
improve the bandwidth saving will only achieve a little benefit.

It may also be noticed that the increase of the number of
players has also an influence. Logically, if there are more
players, the same value of E/k] can be achieved with smaller
values of 7. So we confirm that the increase of the number of
players is always beneficial. In fact, if there are only 5 players,
perhaps it would be better to maintain the value of BWR around
0.80. Logically, the value of the network delay will have an
influence on the decision of the value of 7. If the network is
fast, we can add a bigger delay, thus increasing bandwidth
saving.

We can make a final observation: as said in previous
sections, another limitation of commercial routers is the
number of packets per second they can manage. This method
also reduces this number by a factor of E/k].

C. System delays

In this subsection we study the impact of the proposed
method in the SRT. In Fig. 5 we show a scheme of the system
with the delays that are added in order to obtain SRT.

® Tienion 1S the time a packet is retained at the queue of
the multiplexer.

e Tpocess FEpresents the time spent in both the multiplexer
and demultiplexer. In [21] a multiplexer for RTP
traffic was implemented, and the processing time was
less than 1 ms.

® Ty is the time spent at the queue of the access
router. The method presented in this paper does not
directly modify this time.

® Touwork is the network delay, which is neither affected.

SPECTS 2011

231

0,95-1,00
= 0,90-0,95
= 0,85-0,90
=0,80-0,85
0,75-0,80
= 0,70-0,75

Bandwidth Relationship BWR

1,00

0,90

x
N
a 0,85
0,80
0,75
-~ 10ms
0,70 20 ms
2.3 4 30 ms
5 -
6 7 8 g 10 19 12 15 40ms period
415 15 4, 18 50 ms
number of players 19
(a)
Bandwidth Relationship BWR 2001
—+-20 players
1,00 L
15 players
0,95 -+10 players
-5 players
0,90 | E—
lz0,85
3
[

0,80
. \

0,70

0,65

5 10 15 20 25 30 35 40 45 50

period (ms)
Bandwidth Relationship BWR ~+T 10ms
1,00 T 20ms
T 30ms
0,95 =T 40 ms
T 50ms
0,90 +4
x 085
N
@
0,80
0,75
0,70
0,65 T T T T
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
number of players
(c)

Figure 4. a) BWR as a function of the number of players and the period. b)
BWR as a function of the period. ¢) BWR as a function of the number of
players.

So the only significant delay which is added is Tieention
which is 7/2 average. In [7] it is said that latency tolerance is
between 150 and 180 ms for Quake III, and above 200 ms for
Counter Strike, so this retention delay can easily be assumed.

Tretention Tprocess Tqueue Tretwork Torocess

Game Server

Players

P > TCM >

|P——»

Figure 5. Delays of the system

In this paper we have not considered the possibility of
modifying the application but, if it could be done, a first
synchronization phase could be implemented in order to make
all the computers in the same game generate the packets in the
same moment, so this delay could be significantly reduced for
the games that use a fixed inter-packet time.

IV. TESTS AND RESULTS

In this section we will show some simulation results
obtained with real game traces. First, we will describe the
method used in order to generate the traffic for the tests.

In order to compare the simulation results with the
theoretical ones, we have used the same game in this section:
Half Life Counter Strike 1. The traffic traces have been
obtained from CAIA project (e.g. the trace for 5 players is in
[22]). There are available traces from 2 to 9 players. There is
an offset of the first 10,000 packets, and only the next
5,000*number_of players packets are included, to ensure that
all the packets correspond to active game traffic, which is the
one we are studying.

In order to obtain traces for more players, we have added
some of them, e.g. we have obtained a trace of 20 players in
dedust scenario, by the addition of the traces of 9, 6 and 5
players in the same scenario. This can be done due to a
property of the client to server traffic, whose distribution is
independent of the number of players [8], [20]: the client to
server traffic of a 20-player game will be similar to the addition
of three games of 9, 6 and 5 players. Logically, we have cut the
time of the traces to the shortest one, obtaining traces of 110
seconds.

A simulation has been conducted using Matlab, in order to
obtain the compressed and multiplexed traffic traces, as shown
in Fig. 6. First, the trace is separated into the individual traces
of the different players, and the server to client traffic is
eliminated. For generating the traffic for the tests, we extract
the generation time, the user and the size of the packet from the
real traces. Next, IP/UDP compressing is applied to each flow.
Finally, using the period 7, the sizes and times of the
multiplexed packets are calculated.

The studied game has three different behaviors, depending
on the graphic rendering method [11], [20]. In our case, the
traces have been obtained with OpenGL rendering, which is the
most common one, and has inter-packet times of 33 ms and 50
ms with a 50% of probability each. This makes the value of 4
be 24 packets per second. The analysis of the probabilities for
this traffic has been included in the Appendix, subsection B.

SPECTS 2011

232

Fig. 7 compares the theoretical values of BWR and the ones
obtained in the simulations. It can be observed that the obtained
values are similar to the theoretical ones, except for small
values of the period and the number of players. The cause of
this is that inter-packet times are not exactly the expected ones,
as they have a small variation around 33 and 50 ms, as it can be
seen in the histogram (Fig. 8).

IP/UDP

Original trace Client to Multiplexed,
server traffic headers compressed
compressed and tunneled
Player 1to N Player 1 Player 1 Player 1to N
S ? Player 2 Player 2 A .
S 8 \
o | 2 / ’ \
= e > » period |-
g |2 AN «
315 N y
~_ PlayerN PlayerN ~ ~

\ ///
L» Not used

Figure 6. Method used to build the traces.

Bandwidth Relationship BWR ——5 players simulation

-+ -5 players theoretical
——10 players simulation
- -10 players theoretical
15 players simulation
-m-15 players theoretical
——20 players simulation
- % -20 players theoretical

1,00

0,95

090 RN
085
\
N
\
0,80 <
N
LN \\\\\\
075 >

0,70

BWR

5 10 15 20 25 30 35 40 45 50
period (ms)

Figure 7. Comparative of the theoretical and the simulation results of BIWR

Inter-packet time histogram
1600

1400

1200

number of packets
© 5]
S S
IS IS

o
=3
S

400

200

30 35 40 45 50 55
inter-packet time (ms)

Figure 8. Histogram of inter-packet time in ms

Packets per second =<5 players
600 —+—10 players

15 players
——20 players
500 \
400 \
300 \
200 \

100 \7§:\.\\
native 5 10 15 20 25 30 35 40 45 50
Period in ms

pps

Figure 9. Packets per second managed by the access router.

—5 players

—4+-10 players
15 players

=20 players

Packet size in bytes

1400

1200

1000

bytes

600 /‘
400 /
200 /

—_

native 5 10 15 20 25 30 35 40 45 50
Period in ms

Figure 10. Size of mux packets.

Fig. 9 presents the number of packets per second managed
by the access router. As explained in section II.A, a reduction
of this parameter can also be interesting. We observe that the
bigger the period, the smaller the amount of packets per
second, which tends to be the inverse of the period, despite the
number of players. Fig. 10 presents the packet size, which
grows linearly with the period.

V. CONCLUSIONS

This work has presented a tunneling, compressing and
multiplexing method, which can be used to achieve bandwidth
savings by compressing headers and grouping packets into
bigger ones. It can be useful in order to reduce the overhead of
online gaming traffic, as these applications usually generate a
high rate of small packets. The method uses an IP/UDP
compressing protocol, multiplexing with PPPMux and a L2TP
tunnel in order to work end-to-end.

The enterprises which develop games could be interested
on reducing the bandwidth, and also the number of packets per
second they have to manage. The bandwidth savings can also
be interesting in order to obtain a better behavior in access
networks with limited bandwidth.

SPECTS 2011

The method has been tested with the traffic of FPS games,
because these applications have very stringent temporal
constraints, as players demand a high interactivity. Simulations
have been conducted in order to study the bandwidth savings,
and the results show that the bandwidth can be reduced up to
38% for IPv4 and over 50% for IPv6. The added delays can
remain small if the number of players sharing the same path is
big enough. As a future line, we consider the deployment of an
algorithm that dynamically adjusts the multiplexing parameters
depending on the number of players and the network statistics,
as delay and packet loss.

APPENDIX

Here we present the calculations necessary to obtain an
analytical expression of E[k|k>1], which is required to build
the graphs of BWR presented in section III. First, we obtain
E[k] as:

E[k]=Pr(k=0) E[klk=0]+ Pr(k =1) E[klk=1]+

+ Pr(k>1) E[klk>1] (5)

And taking into account that £/k|k=0/=0 and Efk|k=1]=1,
we obtain:

E[k]-Pr(k =1)

EIRk= 1= =5

(6)

So we need to obtain the expressions for Pr(k=0), Pr(k=1)
and Pr(k>1). In the previous analysis, we have defined & as the
total number of packets arrived to the multiplexer, i.e. the sum
of the packets from each player. Now, we define / as the
number of packets of a single player. We consider that the N

different players’ packet arrivals are independent, so E/k/=N
E[l]=NAT.

A. Constant packet rate

The different probabilities depend on the statistical
distribution of the inter-packet delay of the studied game. We
will consider a constant packet rate, as it occurs in many games
[11]. Let ¢ be the inter-packet time. We will consider 7 < 2z, in
order to avoid big added delays, so the maximum value of / is
2, and consequently:

E[l]=AT= Pr(l=1) +2Pr (I=2) (7
If we have T <t, then Pr (/=2)=0, so using (7):

Pr=1)=E[l] = AT (8)

Pr (1=0)=1-Pr (I=1)=1- A T 9)

And if we have T > ¢, then Pr (/=0)=0, so knowing that the
sum of the probabilities is 1, and using (7), we obtain:

Pr(I=1)=2-E[k]=2~ AT (10)

233

Pr (1=2)=1-Pr(I=1) =E[k] -1 =AT-1 (11)
And now we can find Pr (k=0):
Pr(k=0) = [Pr(I=0)]" (12)

But Pr(k=1) is null if there is more than one player and 7>z,
as every player will have sent at least one packet during the
period. So the expression for Pr(k=1) for T <tis:

N 2
Pr(k=1)|7<, = [| J Pr=D)[Pr=0)]"' (13)

B. Two possible inter-packet times

In this subsection we consider the case of a game that
generates packets using two different inter-packet times. Let #;
be the smallest one and ¢, the biggest one, and p; and p, the
respective probabilities of having ¢#; and #,. We will consider, as
happens in the game considered in this work, that T’ < 2¢;, and
t, < 2t,;. In this case, we have the next value for A:

A= _ (14)
pity + poty
We will now distinguish two cases. First, if we have T < 7,
then we have the same case as in (8) and (9), as Pr(/=2)=0.

In the case #; < T < t,, we have to find Pr(7=0), i.e. the
probability of having no packets in a period 7, which will be
the probability of the period beginning during the first #,-7
seconds of an inter-packet time of duration #,, so, considering
that the consecutive inter-packet times are independent:

12_

Pr(1=0) = p,
Pt poty

=pMt-T) (15)

And now, using (7) and knowing that the sum of the
probabilities has to be 1, we will be able to obtain:

Pr(l=1) = A[T- 2p(T-1))] (16)

Pr(1=2) = p,A(T-t}) 17
Finally, (12) and (13) can be used in order to obtain the
probabilities of the different values of k.

REFERENCES

[1] C. Chambers, W. Feng, S. Sahu, D. Saha: Measurement-based
Characterization of a Collection of On-line Games. In Proceedings of the
5" ACM SIGCOM conference on Internet Measurement (IMC’05).
USENIX Association, Berkeley (2005)

[2] K. Chen, P. Huang, C. Lei: Game traffic analysis: An MMORPG
perspective. In Proceedings of the international workshop on Network

SPECTS 2011

234

(3]

(4]

(3]
(6]
(7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

(22]

and operating systems support for digital audio and video
(NOSSDAV’05), pp. 19-24. ACM, New York (2005)

M. Mauve, S. Fischer, J. Widmer: A Generic Proxy System for
Networked Computer Games. In Proceedings of the 1% workshop on
Network and system support for games (NetGames’02), pp. 25--28.
ACM, New York (2002)

D. Bauer, S. Rooney, P. Scotton: Network Infrastructure for Massively
Distributed Games. In Proceedings of the 1% workshop on Network and
system support for games (NetGames’02), pp. 36-43. ACM, New York
(2002)

M. Degermark, B. Nordgren, D. Pink: RFC 2507: IP Header
Compression (1999)

B. Thompson, T. Koren, D. Wing. RFC 4170: Tunneling Multiplexed
Compressed RTP (TCRTP), November (2005)

S. Zander, G. Armitage: Empirically Measuring the QoS Sensitivity of
Interactive Online Game Players. Australian Telecommunications
Networks & Applications Conference (ATNAC2004), Sydney,
Australia, December (2004)

P. Branch, G. Armitage: Extrapolating Server To Client IP traffic From
Empirical Measurements of First Person Shooter games. In Proceedings
of 5th ACM SIGCOMM workshop on Network and system support for
games (NetGames '06). ACM, NY, USA (2006)

W. Feng, F. Chang, W. Feng, J. Walpole: Provisioning On-line Games:
A Traffic Analysis of a Busy Counter-Strike Server. SIGCOMM
Comput. Commun. Rev. 32, p. 18 (2002)

W. Feng, F. Chang, W. Feng, J. Walpole: A Traffic Characterization of
Popular On-Line Games. IEEE/ACM Trans. Netw., pp. 488-500 (2005)

S. Ratti, B. Hariri, S. Shirmohammadi, A Survey of First-Person Shooter
Gaming Traffic on the Internet, IEEE Internet Computing, pp. 60-69,
September/October (2010)

K. Lee, B. Ko, S. Calo: Adaptive Server Selection for Large Scale
Interactive Online Games. In Proc. 14" International Workshop on
Network and operating systems support for digital audio and video
(NOSSDAV’04), pp. 152--157. ACM, New York (2004)

L. Gautier, C. Diot: Design and Evaluation of MiMaze, a Multi-player
Game on the Internet. In Proceedings of the IEEE International
Conference on Multimedia Computing and Systems (ICMS’98), IEEE
Computer Society, pp. 233. Washington (1998)

V. Jacobson: RFC 1144: Compressing TCP/IP Headers for Low-Speed
Serial Links (1990)

M. Mauve, V. Hilt, C. Kuhmiinch, W. Effelsberg: RTP/I-Toward a
Common Application Level Protocol for Distributed Interactive Media.
In Proceedings of IEEE Transactions on Multimedia, pp. 152-161 (2001)

G. Pelletier, K. Sandlund, RFC 5225: RObust Header Compression
Version 2 (ROHCv2) (2008)

A. Couvreur, L. M. Le-Ny, A. Minaburo, G. Rubino, B. Sericola, L.
Toutain, Performance analysis of a header compression protocol: The
ROHC unidirectional mode, Telecommunication Systems, vol. 31, no. 6,
pp- 85-98 (2006)

E. Ertekin, C. Christou: Internet protocol header compression, robust
header compression, and their applicability in the global information
grid. IEEE Communications Magazine, vol. 42, pp. 106-116 (2004)

S. Zander, G. Armitage, A traffic model for the Xbox game Halo 2. In
Proc. International Workshop on Network and operating systems support
for digital audio and video (NOSSDAV '05). ACM, New York, NY,
USA, pp 13-18 (2005)

T. Lang, G. Armitage, P. Branch, H. Choo: A Synthetic Traffic Model
for Half-Life. In Australian Telecom, Networks and Applications
Conference (ATNAC) Melbourne (2003)

H. Sze, C. Liew, J. Lee, D. Yip: A Multiplexing Scheme for H.323
Voice-Over-IP Applications. IEEE J. Select. Areas Commun. Vol. 20,
pp. 1360-1368 (2002)

L. Stewart, P. Branch: HLCS, Map: dedust, 5 players, 13Jan2006.
Centre for Advanced Internet Architectures SONG Database,
http://caia.swin.edu.au/sitcrc/hles_130106_1_ dedust_5_fragment.tar.gz

	SPECTS2011.pdf

