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Abstract

In this work we attempted the stratification of patients

at risk for VT by means of BSPM recorded during

sinus rhythm, based on the evidence that specific

arrhythmogenic alterations manifest on body surface

potentials. Due to the high dimensionality of BSPM

data and the limited number of available patients, a

feature extraction step was necessary prior to the classifier

design. Feature extraction was performed by means of

linear expansions of two different time intervals: QRS

and ST-T complexes. Two approaches were studied:

the Karhunen-Love transfom (KLT) and spatio-temporal

expansions. A multivariate linear discriminant analysis

was applied to the extracted features to classify the study

population in two groups: VT and non-VT. Our results

showed that spatio-temporal features (SE=83%, SP=86%)

obtained similar classification results than KLT features

(SE=78%, SP=93%) with a lower computational cost. For

comparison, a method reported in the literature based on

QRST integral maps was implemented, obtaining results

within the same range (SE=88%, SP=72%).

1. Introduction

Ventricular tachycardia (VT) is a major factor of

mortality in patients with heart disease. Several

approaches have been investigated in order to identify

the presence of arrhythmogenic regions in the ventricular

myocardium, such as electrophysiological studies,

ambulatory monitoring, exercise testing, 12-lead ECG

and body surface potential mapping (BSPM). There is

some evidence that specific electrophysiological alterations

during sinus rhythm are associated with vulnerability to

VT and manifested in body surface potentials. Therefore,

BSPM analysis is particularly challenging since nearly all

noninvasively-available electrocardiographic information

can be captured. Previous works showed that subjects at

risk for VT have unique map characteristics [1], e.g. the

spatial distribution of QRST integrals over the torso was

used in [2] to stratify patients at risk for VT.

In this study we attempted to identify patients at risk for

VT by means of BSPM recorded during sinus rhythm. The

large dimensionality of BSPM data in relation to the limited

number of patients of the study population made necessary

the reduction of the dimensionality of the original BSPM

space prior to the classifier design to avoid the ”Hughes

phenomena” [3]. First, feature extraction was performed

by means of linear expansions; then, a linear discriminant

analysis was applied to the reduced feature space to stratify

patients at risk for VT. Two approaches of linear expansions

were studied: the Karhunen-Loève transform (KLT) and

spatio-temporal (TS) expansions, proposed in [4] as a

low-complexity approximation to KLT. For comparison

purposes, the method in [2], based on the QRST integral,

was also implemented.

2. Materials and methods

2.1. Study population

The study population consisted of 705 patients:

259 normals (noMI/noVT), 69 with no evidence of a

previous myocardial infarction (MI) but with a history of

spontaneous VT (noMI/VT), 258 with no history of VT

but a previous MI (MI/noVT) and 119 with a history of

VT and previous MI (MI/VT). The diagnosis of MI was

based on non-ECG evidence in the acute phase and the

presence of diagnostic 12-lead ECG changes. Patients with

a history of VT presented with electrocardiographically

documented spontaneous sustained VT in the absence of a

reversible cause. Normal subjects had no clinical evidence

of arrhythmias or heart disease on history, 12-lead ECG,

physical and echocardiographic examination. All subjects

were informed of the study’s procedures, in accordance

with the ethical guidelines approved by the institutional

ethics committee.

2.2. Body surface potential mapping

BSPMs were recorded at the Victoria General Hospital,

Halifax, NS, and at the Foothills Hospital, Calgary, AB,
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Canada, using identical protocols and acquisition systems

(sampling rate of 500 Hz, amplitude resolution of 2.5 µV ).

The BSPM lead array had 120 leads: 3 limb and 117

unipolar chest leads (76 on the front and 41 on the back).

BSPMs were recorded during sinus rhythm and supine

position for 15 consecutive seconds. QRST complexes were

identified and processed to yield a single averaged complex

for each lead. The onset and end of ECG waves were

determined from the averaged complexes [2].

2.3. Feature extraction

Feature extraction from BSPMs was performed by means

of linear expansions. Each BSPM was represented by a

N × L matrix X (N samples, L channels) which can be

decomposed as a linear combination of N × L elementary

matrices Bij,

X =

N∑

i=1

L∑

j=1

wijBij. (1)

The elementary matrices Bij are often selected in order

to pack most of the energy of X in a small subset of

r≪NL weighting coefficients wij . Two approaches of

linear expansions were considered in this work: KLT and

TS expansions. Their characteristics and application to

multichannel signals, like BSPM, were described in [4].

The basis functions of KLT are built from the dominant

eigenvectors of the data covariance matrix. In the case of

TS expansions, the basis functions are rank-one matrices

of the form Bij = tisj
T , being ti and sj the dominant

eigenvectors of the average temporal and spatial covariance

matrices, respectively.

The features extracted for BSPMs were the r-th dominant

coefficients for KLT and TS approaches. The parameter

r should be chosen as a trade-off between energy

representation and basis function generality. In this work,

the rule of thumb r < (training set size)1/2 was followed to

avoid using basis functions overtunned to the training set.

2.4. Classification

A stepwise multivariate linear discriminant analysis was

independently applied to KLT and TS features to classify

subjects into the VT group (noMI/VT + MI/VT) and the

non-VT group (noMI/noVT + MI/noVT). The criterion used

in the variable inclusion/rejection was the Wilk’s lambda

minimization. The number of stepwise selected variables

followed the rule #variables < (smallest group size)1/2.

Discriminant analysis assumes that classification variables

are Gaussian within each of the groups. The Kolmogorov-

Smirnov test was used to check the normality of the

variables (a p-statistic value > 0.05 assessing the normality

of a variable). All statistical analysis was performed using

SPSS 11.5.

Classification performance was quantified by the

indexes: sensitivity (SE), specificity (SP ), positive

predictive value (P+), negative predictive value (P−) and

exactness (EX).

In this work the study population was divided into two

sets: a training set of 200 subjects (50 noMI/noVT, 50

MI/noVT, 50 noMI/VT, 50 MI/VT), used to derive the

basis functions (feature extraction) and the discriminant

functions (classification), and a test set of 76 subjects (19

noMI/noVT, 19 MI/noVT, 19 noMI/VT, 19 MI/VT), used

to evaluate classification performance. To further support

classification results on the finite-size test set, classification

performance was also evaluated on the training set by

means of cross-validation (leave-one-out method).

2.5. QRST�integral
For comparison purposes, the method in [2] was also

implemented. Feature extraction was accomplished in two

steps: first, QRST-integral was calculated for each lead as

the algebraic sum of the sampled potentials within QRST

complex multiplied by the sampling interval of 2 ms; then,

KLT was applied to QRST-integral maps. Finally, the

r-th dominant coefficients constituted the set of features

entering a stepwise discriminant analysis, as the explained

in Section 2.4.

3. Results

In order to study depolarization and repolarization

properties, two different time intervals were considered:

QRS complex (160 ms centered at the QRS fiducial point,

defined as the median center of gravity of the QRS complex

among all leads) and ST-T complex (450 ms from QRS

end). QRS complex maps were represented by matrices

QRS-BSPM dimensioned 81 × 117. ST-T complex maps

were represented, after decimating the signal by a factor

of 5, by matrices STT-BSPM dimensioned 45 × 117. The

STT-BSPMs were padded with zeros when ST-T complexes

were shorter than 450 ms.

BSPM matrices were normalized to have unit energy

(‖X‖ = 1), in order to equalize the contribution of all

subjects of the training set. The normalization was also

performed in the test set because the interesting point was

the relative contribution of each basis function to the whole

BSPM. In this way, the ECG complexes’ energy would not

affect transformed coefficients.

Feature extraction was independently applied to QRS-

BSPMs and STT-BSPMs as explained in Section 2.3. A

total of 14 KLT features (denoted QRS-KL and STT-

KL, respectively) and 14 TS features (QRS-TS and STT-
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TS, respectively) were considered. Stepwise discriminant

analysis was independently applied to different variable

sets to discriminate between the VT and non-VT groups.

The variable sets were the QRS-KL, STT-KL, QRS-TS

and STT-TS features. Two other variable sets were also

considered, QRS-STT-KL and QRS-STT-TS, containing

the most significant features from both intervals. A

maximum number of 10 variables was allowed in the

discrimination (Section 2.4).

All variables had normal distribution according to

Kolmogorov-Smirnov test, but for the most dominant

STT-TS feature within the non-VT group. An arcsin

transformation was performed to correct its lack of

normality but classification results did not change.

The EX achieved in the test set by the different variable

sets is shown in Fig. 1 as a function of the number of

variables used. It can be appreciated that there is a threshold

above which EX is not increased, but even decreased, as

using a higher number of variables.
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Figure 1. Exactness as a function of the number of

variables in the test set.

Classification indexes achieved in the test by each

variable set, when using the variables giving the maximum

EX, are shown in Table 1.

The QRST-integral used in [2] was applied to our study

population as explained in Section 2.5. Exactness achieved

in the test set as a function of the number of variables can

be seen in Fig.1, where the existence of a threshold is also

observed in this case.

Cross-validation classification results achieved by the

different variable sets in the training set are shown in

Table 2, mostly supporting the results obtained in the test

set.

Table 1. Classification results in the test set
Variable set SE SP P+ P
EX

QRS-KL(6) 68 87 84 73 77

QRS-TS(9) 68 79 76 71 73

STT-KL(7) 89 68 74 87 79

STT-TS(6) 92 76 80 91 84

QRS-STT-KL(9) 68 89 87 74 79

QRS-STT-TS(10) 76 92 91 80 84

QRSTintegral(6) 66 100 100 75 83

The number in brackets represents the number of variables

used.

Table 2. Cross-validation classification results in the training set

Variable set SE SP P+ P
EX

QRS-KL 79 93 92 82 86

QRS-TS 81 83 83 81 82

STT-KL 76 80 79 77 78

STT-TS 76 84 83 78 80

QRS-STT-KL 78 93 92 81 85

QRS-STT-TS 83 86 86 83 84

QRST-integral 88 72 76 86 80

4. Discussion and conclusions

BSPM constitutes an encouraging technique in

noninvasive cardiology since nearly all available

electrocardiographic information can be captured. In

this work we dealt with the identification of patients at

risk for VT by means of features extracted from BSPM

recorded during sinus rhythm. In an attempt of designing

the optimal classifier using all available information, we

had previously implemented a parametric-linear classifier,

a parametric-quadratic classifier and a nonparametric

classifier, based on [3]. Our results showed that the number

of subjects in the training set used to design the classifier

was insufficient given the dimensionality of the data

because of the so-called ”Hughes phenomena” [3]. As a

consequence the classifiers were overfitted to the particular

study population and failed in prospective populations.

Therefore, a feature extraction step was necessary to reduce

BSPM dimensionality while maintaining the important

diagnostic information. Then, the classifier was designed

from the reduced feature space.

Feature extraction was performed by means of linear

expansions. The Fourier transform had been studied to

reduce BSPM dimensionality [5], but the requirement of

equally spaced samples constituted a restrictive limitation

in the spatial domain. Two approaches were considered

in this study: KLT and TS. KLT had been previously

applied to BSPMs in other works to eliminate spatial [2]

and temporal redundancies [6]. One of the limitations of
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the KLT is the high computational load and complexity

required for computing the basis functions and the

transformed coefficients. In [4] TS was proposed as a

low-complexity approximation of the KLT, getting similar

energy packing performances in a 12-lead ECG database.

KLT and TS were compared in this work in terms of

diagnostic classification performance. The number of

subjects in the training set limited to 14 the order of

KLT and TS basis function estimated avoiding the lack

of generality. Higher order basis functions would collect

particular details from the training set instead of the general

behaviour of BSPMs.

The choice of a linear classifier was based on its

simplicity, relative insensitivity to a limited-size training

set and good performance even when unfulfilled underlying

assumptions. Results show the existence of a threshold

in the number of variables used by the classifier above

which classification performance did not longer improved.

Classification performance achieved by KLT and TS

features were within the same range of exactness, slightly

varying (< 5%) depending on the population and the

variables used in the classifier. This extends the findings

in [4], suggesting that TS can be used as an approximation

of KLT not only for energy packing but also for diagnostic

classification in BSPM analysis. In this case, the main

advantage of TS over KLT is the complexity reduction in

basis functions’ computation (from O((NL)3) to O(N3 +
L3)). The complexity in estimating the transformed

coefficients is lower for TS than for KLT if r>(N + L),
which is not the case in this work.

Classification results achieved by depolarization

and repolarization features corroborate the previous

finding that vulnerability to VT alters depolarization

[7] and repolarization properties [8], and suggest that

these alterations may be correlated since only a slight

improvement in classification performance is achieved

when depolarization and repolarization periods are jointly

considered.

QRST-integral maps have been widely analyzed as an

indicator of vulnerability to VT [1, 2]. In [2] the

spatial distribution of QRST-integral maps were reported

to identify patients at risk for VT with a SE of 90%

and a SP of 80%. In our study population classification

performance achieved by QRST-integral maps was slightly

lower (SE=88%, SP=72%), within the same range of KLT

and TS features (SE≈80, SP=≈90 in average). These

results suggest that the relevant information for identifying

patients at risk for VT is contained in the spatial distribution

of BSPM rather than in the temporal waveform, since

the spatial distribution of a single measurement per beat

(QRST integral) obtained similar results than when the

whole QRST complex was considered.

The main limitation of this work is the insufficient

number of patients available, given the data dimensionality,

to design the classifier [3]. Therefore, it was extremely

important to derive a reduced feature space without lost of

diagnostic information and avoiding the overtunning.

In a futher study, the discriminant KLT and TS

features selected by the stepwise procedure should

be physiologically interpreted to understand how the

arrhythmogenic substrate may manifest through them.
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