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Abstract—A method for detecting body position changes that uses the surface
vectorcardiogram (VCG) is presented. Such changes are often manifested as I
sudden shifts in the electrical axis of the heart and can erroneously be interpreted
as acute ischaemic events. Axis shifts were detected by analysing the rotation angles
obtained from the alignment of successive VCG loops to a reference loop. Following \
the rejection of angles originating from noise events, the detection of body position I
changes was performed on the angle series using a Bayesian approach. On a ,
database of ECG recordings from normal subjects performing a predefined sequence
of body position changes, a detection rate of 92% and a false alarm rate of 7% was
achieved. :
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1 Introduction

MYOCARDIAL ISCHAEMIA is manifested in the ECG as a change
in the ST-T segment, sometimes accompanied by a change in
QRS morphology during the advanced stages of ischaemia.
Unfortunately, a change in body position also affects the QRS
complex and the ST-T segment and can be misclassified as an
acute ischaemic event by the monitoring equipment used in the
intensive care unit. Therefore it would be highly desirable to
introduce a means for reducing the number of false alarms or, at
least, to inform the staff whether or not a detected event is a
likely body position change (BPC).

Several recent studies have documented the effect of BPCs
on the ECG/VCG; these studies are descriptive in nature and
quantify the effect on various types of ECG measurement. In one
study, the standard 12-lead ECG and the derived 12-lead ECG
(using the so-called Dower’s EASI lead system) were compared
in terms of QRS and ST-T changes for different body positions
(ApAMS and DREW, 1997). It was concluded that BPCs
influence all ECG measurements to various degrees, although
those related to the QRS morphology are more sensitive
than those related to the ST-T segment. Another paper
investigated the types of QRS and ST-T change that accompany
a BPC and reported that the effects on the ST-T segment were
usually small (JERNBERG ef al., 1997). Yet another paper has
dealt with BPCs in relation to ischaemia monitoring: changes in
the VCG were studied in terms of vector differences of the QRS
complex and vector magnitude changes of the ST-T segment
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(NORGAARD ef al., 2000); see also JENSEN et al. (1997). The
results showed that both types of measurement are rather
sensitive to BPCs, especially during changes to the left lateral
position. Tt was concluded that monitoring algorithms have a
limited value unless they are combined with BPC detection
(NORGAARD et al., 2000).

It was recently suggested that different positional ECG
templates should be recorded at the onset of ischaemia moni-
toring for later use in the software discriminating between
transient myocardial ischaemia and BPCs (DREW and ADAMS,
2001). This idea will probably help in reducing the number of
falsely detected ischaemic events. However, as also correctly
pointed out by the authors, the initial learning procedure is not
very feasible in unstable patients.

Although the undesirable effect of a BPC is well-established
in ischaemia monitoring, ECG-based methods developed for
alleviating this problem have been rare. One of the few studies
addressing this problem was presented by Jager and colleagues
(JAGER et al., 1998), who made use of the Karhunen-Loéve
transform for detecting ischaemic ST-T changes as well as non-
ischaemic episodes due to BPCs. They developed an algorithm
that analyses the trajectory of the transform coefficients of
successive QRST intervals, under the hypothesis that a BPC is
associated with an abrupt trajectory change, whereas an
ischaemic episode is manifested by a much more gradual
change. In a recent study, Nelwan and colleagues developed a
new technique for detecting BPCs, based on both scalar and
spatial measurements; the technique was found to be useful for
reducing the number of false alarms in an automated monitoring
system (NELWAN et al., 2000).

Another approach to BPC detection is to use a set of sensors
that produce a voltage proportional to the acceleration associated
with different body movements. Such measurement systems
have recently received considerable attention for the purpose of
monitoring body posture and motion (FOERSTER ef al., 1999;
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AMINIAM ef al., 1999; NG et al, 2000). Although such an
approach offers an exact, objective description of body move-
ments, the extra sensors needed and related recording equipment
make the approach less useful in intensive care monitoring.

The present method for BPC detection is based on the well-
known observation that a BPC causes a systematic shift of the
electrical axis that reflects the main direction of the VCG loop
(RIEKKINEN and RAUTAHARJU, 1976); a similar relationship has
not been established between ischaemic episodes and axis shifts.
The method exploits shifts in loop direction by assuming that a
BPC is manifested by a certain ‘signature’ in the series of
rotation angles that result from the alignment of successive
loops to a reference loop. A Bayesian approach is then taken
to the detection problem, and the performance of the resulting
detector is studied on a database with ECG signals recorded
during different types of BPC.

2 Methods
2.1 BPC characterisation using rotation angles

An observed VCG loop, represented by the matrix Z, is
assumed to derive from a reference loop Z; but to be altered
through certain geometrical transformations caused by changes
in body position and other extracardiac sources. The time
location of the loop is determined by QRS detection. As the
terminal part of the QRS complex and the ST-T segment are most
prone to ischaemia-induced changes in morphology, only the
initial part of the QRS complex is used to define the VCG loop in
this study; see Fig. 1. The alignment involves three transforma-
tions described by the scalar amplitude factor =, the rotation
matrix @ and the time shift matrix J,. Estimates of these
parameters are obtained by minimising the normalised
Euclidean distance & between the samples of the two loops

_1Z — 20z |I7
12QZ o J Il
The Frobenius norm for an N x M matrix X is defined by

M N
X015 =D el )

i=1 j=I

(1

The matrices Z and Z, have dimensions 3xN and
3 x(N + 2A), respectively, where the columns contain the
orthogonal leads X, Y and Z. The 3 x 3 rotation matrix Q is
orthonormal, i.e. Q@7 = I, where I denotes the unit matrix. The
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Fig. 1 ORS complex and two time intervals used in loop alignment:

interval always included and interval extended by A at each end

Medical & Biological Engineering & Computing 2003, Vol. 41

time shift matrix J is introduced to ensure that the two loops are
temporally well-aligned; therefore Z, is symmetrically
augmented with 2A samples, such that different time intervals
of Z can be selected and aligned to Z. The matrix J_ is defined
by the integer-valued time shift t

0A+T

J.o=| T 3)
/-

where 1 = —A, ..., A. The dimensions of the upper and lower

zero matrices in (3) are equal to (A + 1) x N and (A — 1) x N,
respectively, and I'is N x N. The introduction of the normalised
distance criterion in (1) is motivated by the observation that an
unnormalised criterion, such as the one suggested in SORNMO
(1998), results in temporal synchronisation that favours selec-
tion of the lower-amplitude interval (i.e. the PQ interval) of the
two loops, as the smallest distance will occur in that interval. By
normalising each selected interval with its energy, more reliable
angle estimates are obtained, as the smallest distance instead will
be found in an interval with a much higher signal-to-noise ratio
(SNR). Thus the normalised criterion is particularly important to
consider when only parts of the QRS complex are analysed.

The distance £ is globally minimised by first finding the
estimates of o and @ for every value of 7, and then selecting that ¢
(and related estimates of o and @) that minimises (1); the details
of the minimisation can be found in Appendix 1. For a fixed
value of 7, the optimum estimate of the rotation matrix is
obtained by

0. =UT )

where the matrices U, and V. result from singular value
decomposition of the matrix D, = ZJ! Z} containing the left
and right singular vectors, respectively. Once @, is available, an
estimate of the scalar « is obtained by

. tHZZ
o = % ()
tF(Z QTZRJI_)
Finally, to find the minimum distance &,,,, the estimation
procedure defined by (4) and (5) is repeated for all values of 1
within the interval —A < 7 < A, and the value of 7 yielding the
minimum is selected

I1Z — &,0,Zpd .|
H&‘EQTZRJT H;z'-'

Although the parameter  was not judged to be as useful for BPC
detection as the rotation angles, scaling is still considered, as it
may implicitly improve the accuracy of 7 in (6).

The optimum estimate @ describes the rotation of the VCG
loop. As such a rotation can be viewed as three successive
rotations defined by the rotation angles ¢y, @y and @, i.e.

(6)

T =arg min
—A<t<A
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* #*® *
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estimates of these angles can be obtained by identifying the
proper elements of @ with those given in (7); the asterisk “*’
denotes a ‘don’t care’ matrix entry. The identification yields the
following estimates:

sz = ‘?)y = arcsin (‘?13) (8)

Gy = by = arcsin(qzi) 9)
cos Py

@’3 = (f)z = arcsin(éqli—) (10)
COsS Py

where g, denotes the element of the mth row and nth column
of Q.

Although the loop alignment technique was developed for the
processing of one loop at a time, it can easily be extended to the
alignment of successive loops. In doing so, we obtain three series
of rotation angle estimates, irregularly sampled at the time
instants when the heart beats. Fig. 2 presents an example
where the three angle series contain BPCs at the rate of
one every minute. A series is typically composed of two different
components: short-term oscillations, mainly due to respiratory
activity (manifested as ‘superimposed noise’), and abrupt step
changes due to BPCs. During a BPC, the increased level of
muscular noise further increases the level of short-term
oscillations.

2.2 Rotation matrix property

A detailed study of the above alignment procedure revealed
that large estimation errors occasionally were related to the
computation of 7. For successive beats with similar morpho-
logies, we can expect that changes in the direction of the
clectrical axis are relatively small, with angle fluctuations
within £15° (ADAMS and DREW, 1997). Such a range of
angles implies that the rotation matrix is diagonally dominant.
However, at higher ECG noise levels, it was observed that @ did
not always possess such a structure, implying that the major
part of one lead derives from the other two leads. By studying
the estimates of @ for different values of 7, it was found that
the rotation matrix became diagonally dominant for values
adjacent to 7.
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Fig. 2 Example of estimated rotation angles ¢y(n), ¢y(n) and

p5(n). Change in body position of subject occurs at onset
of every minute (indicated by triangles)

*Equipment from Siemens-Elema AB, Solna, Sweden
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One technique that solves this particular problem is simply
to discard those @, that are not diagonally dominant and to
evaluate the distance criterion based on the remaining set of
matrices. A diagonally dominant matrix is here defined as

qlzm,T = Z qii..’ n=123 (1 1)
mn=1,273
n#£Em

where —A < t < A. The resulting set of diagonally dominant

matrices is contained in the set denoted by €2.. The final estimate
T is obtained by a constrained grid search defined by

25 02T,

T = arg min | - %TQTZRJJ

= H 283 QIZRJr HTL

In the unlikely case of an empty set Q_, the loop is simply
excluded from further analysis.

The effect of introducing the constraint on diagonal
dominance is illustrated by Fig. 3, where the combination of a
high noise level and leads with similar morphologies were found
to result in inaccurate angle estimates. From Fig. 3, it is evident
that the modified alignment method in (12) produces a more
accurate rotation, although it no longer yields the minimum £.
The theoretical limits for diagonal dominance are presented in
Table 1 for the symmetrical cases with one, two and three
identical rotation angles and with the remaining rotation
angles set to zero. From this Table, it can be concluded that
the maximum amount of rotation allowed by the diagonal
constraint is well above what can be expected during a BPC
(ADAMS and DREW, 1997).

2
£ (12)

2.3 Noisy beat rejection and resampling

As the angle estimates become unreliable in situations with
poor SNR, two strategies for excluding such estimates are used:
SNR-based rejection and outlier rejection. Based on an SNR
measure involving the QRS amplitude and the noise level in the
TQ interval, a beat is excluded whenever its SNR drops below an
exponentially updated threshold based on earlier SNRs. This
type of dynamic threshold is used to handle the fact that the SNR
varies considerably during a BPC. It also makes it possible to
eliminate noisy beats for a shorter period of time, while
maintaining the long-term ability to detect a BPC at lower SNRs.

The SNR-based rejection is supplemented with a simple but
effective method for outlier rejection, the so-called X84 rejection
method (HAMPEL et al., 1986). This method finds disproportio-
nately large angle values by testing the difference between the
angle estimates and the median against a threshold that depends
on the median absolute deviation. Angles estimates that exceed
the threshold are excluded from further analysis.

As the resulting trend of angle estimates is sampled at
irregular time instants, it is resampled at a rate of 2 Hz using
linear interpolation before being subjected to BPC detection.

2.4 BPC detection

A simple statistical model of the basic trend characteristics is
considered with the aim of determining if a BPC has occurred
(hypothesis H, ), or if only noise is present (hypothesis H,); this
aim is later extended also to handle the detection of multiple
BPCs. The onset of the observation interval occurs at the sliding
time instant n = n,, and the BPC occurs around the unknown
time 0. A BPC is characterised by the signature s(n), which is

disturbed by additive noise w(n) with mean value m,
H,: @(n) = as(n — ng — ) + w(n) (13)
Hy: @(n) = w(n) -

for B= Ry i iy M —1, where
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Fig. 3  Effect of diagonally /non-diagonally dominant rotation matrix: (a) leads X, Y and Z of original VCG signal; (b) leads after rotation with
optimum but non-diagonally dominant matrix; (c) leads after use of constrained loop alignment in (12), resulting in diagonally dominant
matrix. Note that beat morphologies in (a) and (c) better resemble each other than those in (a) and (b), where S-wave in lead Y is

almost lost

@(n) = [¢,(n) @, (m)@3(m)]”, w(n) and a are 3 x 1 vectors rep-
resenting information related to each of the orthogonal leads. For
simplicity, it is assumed that s(n) is modelled by a step changes

1 D
—= n=0,...,2-1
JD 2
s(n) = 1 D (14)
—— n==,...,D~1
JD 2

0 ‘otherwise

where the length of s(n) is defined by the even-valued integer D.
The length M is chosen such that s(n) is completely contained in
the observation interval. The discrete-valued occurrence time 6
is assumed to have a uniform a priori probability density
function (PDF) such that

1
pO)={D
0 otherwise

0=0,...,D-1 (15)

A BPC is manifested in ¢(r) as a transition from a lower to a
higher level with equal probability as a transition from a higher

Table 1 Maximum values of
rotation angles associated with
diagonally dominant matrix Q

Px Py ®z
45° 0 0°
32.8° 32.8° 0°
26.7° 26.7° 26.7°
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to a lower level. Therefore the amplitude g, is, in each lead,
characterised by a ‘two-point’ a priori PDF

a=af
pla) = (16)

a = —a)

N = N =

where a? is a positive-valued constant representing the magni-
tude of the BPC. Hence, the magnitude of a transition in the /th
lead has a fixed size equal to 2a. The possible combinations of
the amplitudes a that can occur are denoted by the set Q,. The
additive noise is assumed to be white and Gaussian, with mean

m and variance o3,

T Ll (wi(m) — m)?
P (ng)) = 1:[ g o exp(— 207
(17

where  W(ng) = [w(ng)---w(ng + M — D]T. All random
variables in 6, @ and W(n,) are assumed to be mutually
independent.

A Bayesian approach is adopted for developing a BPC
detector that takes its starting point in the binary detection
problem with random, unwanted parameters, ie. # and a
(VAN TREES, 1968; KAY, 1998). The two hypotheses are
characterised by the PDFs p(®(ny)|0, a, H,), indicating that a
BPC has occurred, and p(®(n,)|H,), indicating that nothing has
changed; the matrix ®(ny) = [@(ngy)---@(ny + M — 1)]*
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contains all observations of the three leads. The Bayesian
detector requires that the likelihood ratio is tested against a
threshold #, such that hypothesis H, is decided if

ATDG gp(q)(”n)ﬂ'is)
(@00) = D) o)

_ ZQ,!ZHP((D(”O”G, a, H,) p(0, a)
& p(®(ng)[Ho)

where the two sums are introduced because the random variables
0 and a are discrete-valued. The threshold is commonly treated
as a design parameter and selected such that a certain perfor-
mance is achieved, e.g. in terms of false alarm rate. The detector
in (18) is rather demanding computationally, and therefore a
simplified detector based on the Taylor series expansion has been
derived; see Appendix 2. Assuming that the three leads have
identical statistical properties, the simplified detector is defined
by the sum of the energy of the matched filter output y, (1 + &)
of all leads

D—

>n (18)

3
Y Vi +0) =1’ (19)

!
=0 =1

where the modified threshold 5’ is defined in Appendix 2.

To detect multiple BPCs, the detection test is repeated for
successive values of ng, until the entire signal has been
processed. Hence, the detector performs a “sliding’ hypothesis
test to find out whether a BPC has occurred or not. Once a BPC
has been detected, the threshold test is inhibited for 10 s to ensure
that a single BPC is not detected twice.

3 Database

The performance of the BPC detector was studied on an ECG
database collected from 20 healthy subjects (nine females,
32 + 9 years old). The subjects were instructed to change their
body position in the following sequence: supine, right side,
supine, left side, supine. Each position was held for 1 min, so that
muscular activity and other artifacts were allowed to decay
before the next BPC was initiated. The sequence was repeated
five times so that the method’s performance could be better
assessed; thus, the total duration of each ECG recording was
20 min.

The standard 12-lead ECG was acquired at a sampling rate of
1 kHz and with an amplitude resolution of 0.6 uV. As the BPC
detector requires a VCG signal, such a signal was synthesised
from the 12-lead ECG using the inverse Dower method
(MACFARLANE ef al., 1994).

4 Results

The performance of the BPC detector was evaluated in terms
of the probability of missed detection P, and the probability
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0.05 H |H
" : I

0.005 0.010 0.015 0020 0025 0.030

wr Pr

threshold, n

Fig. 4 BPC detector performance in terms of (M) Py and () Pr
for different values of detection threshold
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Fig. 5 BPC detector performance, in terms of (WP and (0)Pr, as

function of signal length D. Results were obtained for
i = 0.015

of false alarm Pj. These performance measures were estimated
from the numbers of true detections N, false alarms Np
and missed detections N, such that Py, = Ny /(N1 + Ny)
and Pr = Ny/(N7+ Np). A BPC was considered as a true
detection whenever the detector output was contained within a
20 s interval positioned around the BPC.

Fig. 4 presents the performance measures Py, and Py for
different values of the detection threshold #'. For values above
0.015, P,, deteriorates quite rapidly, whereas Pp slowly
decreases. For i’ values below 0.015, P, no longer decreases
but rather increases, owing to the fact that false alarms inhibit the
detection of certain true BPCs. The results in Fig. 4 suggest thata
good over-all detector performance is achieved when n'is
chosen around 0.015. For " = 0.015, the performance figures
are Py, = 0.08 and P = 0.07.

The performance was also investigated for different signal
lengths D; see (14). Fig. 5 shows that a length of 16-1 8 samples
should be used to achieve a low P, (corresponding to a
filter delay of about 4s for a resampling rate of 2 Hz). The
increase in P,; observed for large values of D is due to the
increased detection interval length which, again, inhibits certain
BPCs from being detected; therefore D should preferably not
exceed 20.

Fig. 6 presents an example in which two BPCs are missed.
From the three series of angle estimates, no shifts can be
observed at 3 min and 4 min, despite the fact that BPCs took
place at these times (Figs 6a—c). As a result, no peaks can
be discerned in the detection function, as defined in (19), at these
times. Interestingly, Fig. 6e reveals that distinct changes
in the amplitudes of three VCG leads take place at these times.
The major difference between the second and the fourth minute
is that, whereas the amplitudes of leads Y and Z increase during
the second minute, the amplitude of lead X decreases. The effect
of the amplitude changes can be interpreted as an axis shift in the
angle estimates. During the fourth minute, on the other hand, the
amplitudes of X and Y are both increased, whereas that of Z is
essentially unchanged. Thus a BPC is, in this case, not reflected
by a significant axis shift but rather by marked changes in the
series.

5 Discussion

Ischaemia monitoring is the target application of the present
detector, although other applications may be of interest as well
where BPC information is needed. In monitoring applications,
the ischaemia detector polls the BPC detector only when a
potential ischaemic event is detected. Accordingly, it is impor-
tant that the BPC detector does not classify an ischaemic event as
a BPC. On the other hand, false alarms of the BPC detector
unrelated to ischaemic events can be more easily accepted,
as these do not influence the performance of the ischaemia

Medical & Biological Engineering & Computing 2003, Vol. 41




£ o ——r e e a
&
20 4 2 4 A A 4 4 4
o 1 2 3 4 5 3 7 8
20 L I I T i L] L]

Bylk), °
=)
o

b7k, °
(=]
(2}

0 1 2 3 4 5 6 7 8
Q 0.10 L] T L 1 L) L] L] ]
(=]
<
% oosf {1 ¢
RS
0 1 1 1 1 1
0 1 2 3 4 5 6 .7 8
time, min
lead X lead Y lead Z
2000y
. b
> 1000} ffl ;m;;l | lll
[} ﬁl »
g , li HH\}% g e
= iy
g iz
©
—1008J
time, ms 1 time, min

500%

5007

5007

Fig. 6 Example of missed BPCs. Rotation angles of (a) lead X (BPCs are indicated with triangles), (b) lead Y and (c) lead Z. (d) Detection
Junction defined in (19). (e) Successive cardiac cycles of leads X, Y and Z during first 4 min of recording

detector. In the rather unlikely case of a BPC missed by the BPC
detector but found by the ischaemia detector, the cost associated
with a BPC labelled as an ischaemic event is evidently less than
that of an ischaemic event labelled as a BPC.

The detector is based on the well-known fact that a BPC
causes a shift in the electrical axis of the heart. Such shifts are
quantified by estimation of rotation angles using a newly
proposed criterion for loop alignment. The introduction of the
criterion in (1) is central to the present study and was motivated
by initial, less successful efforts based on the unnormalised
criterion. A number of additional techniques were introduced to
reject unreliable angle estimates at poor SNRs, as an earlier
study showed that loop alignment performance can deteriorate
considerably at such SNRs (ASTROM et al., 2000).

The BPC detector is based on a simple model of the BPC
signature and the related likelihood ratio test, albeit in a
simplified form. Various shapes of s(n) were investigated but
were found to have negligible influence on performance. The
Taylor approximation introduced in the detection test is not valid
for high SNRs, however, the simplified detector will, for such
SNRes, result in an acceptable detection rate, as the separation
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between the two hypotheses remains good. The resulting,
simplified detector is attractive, not only from a computational
viewpoint, but because the Taylor approximation leads to a
detector where neither estimates of the signal amplitude a) noras
the noise mean m; nor variance afvl are required.

Future improvements should include better handling of cases
where a BPC is primarily manifested as a change in «; see Fig. 6.
Such an improvement is likely to reduce the number of missed
BPCs. The ECG noise level is another quantity that could be
incorporated in the detector, as a BPC is typically associated
with an increase in this level; preliminary results indicate that
such information improves the performance.

The main purpose of this paper has been to describe a new
methodology for BPC detection and to indicate its performance
on a database with BPCs only. In a recent study, we have
compared the performance of a method based on the Karhunen—
Loeve transform to that of the above detector, using a database
containing ischaemic events recorded during percutaneous
transluminal coronary angiography, but without the presence
of BPCs (GARCIA et al., 2003); the results of that study gave an
indication of the number of false positives produced by the
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detectors. However, the over-all value of a method can only be
fully assessed once the performance on a database containing
both ischaemic episodes and BPCs has been investigated. The
formation of such a database is associated with considerable
efforts and was not feasible to undertake within the present
study.

The comprehensive efforts by Jager and colleagues (see, for
example, JAGER et al. (1996; 2000)) have recently resulted in the
availability of a database (LTST-DB) that is very well suited for
the development and performance evaluation of BPC detection
algorithms. The database consists of 80 24 h, three-lead ECG
recordings that have been annotated with respect to, for example,
the presence of transient ischaemic events and non-ischaemic ST
events due to axis shifts.
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Appendix 1
Estimation of loop alignment parameters

The minimisation of (1) is achieved by rewriting it as

w(Z'Z)+ Pul [ ZpZpS ) — 2otr(ZT QZ R J )

£ .
2tr(J I Z R Z ] )

and noting that minimisation with respect to @ is equivalent to
maximising the rightmost term in the numerator, as the other
terms are independent of Q. It is possible first to determine
0, independentl}y of . by means of the temporary
matrix D, =ZJ Z}. Singular value decomposition of D,
(SORNMO, 1998)

yields the optimum Qt as
g7 =0, ¥]

where U, and V', denote the matrix with the left and right
singular vectors, respectively. The matrix X, contains the
singular values. The parameter o is estimated by differentiating
£ with respect to o

& tr(Z'Z)
B (S ZEZ )

2 ZH(ZTQTZR.I{)
t(IIZEZ )

oE
2673

Setting this expression to zero gives o,

WAYA)

b, =—————
w(Z'Q.ZgJ)

T

Finally, the estimation of  is given by

1Z — 4.0 ZxJ ||
H&TQTZRJT H}T

T=arg mi
—A=t=A
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Appendix 2
Detector derivation

Introducing the definitions of the a priori PDFs of 0 and a
and the Gaussian noise assumptions, the likelihood ratio in (18)
becomes

s Yo 3 T T

exp (—(¢;(n) — m—(=1)
x dls(n — ny — 0))°/20%,)

A(D(ny)) =

3 ng+M-1

T1 T[] exp(=(oin—mp/26%)

=1 n=ny

This expression can be rewritten to display more clearly the
influence of various factors

= al
A@mo) = g5 > ] [a® [exp =
=0 I=1

wy

ng+M—1
= Z ((P;(ﬂ)ﬂﬂg)S(_n—no40))

h=ny

0 ngt+M—1

+ exp (— LY e —m)

Wi n=ng

xs(h —ny — 9))}

(GG)Z g+ M—1
e)(0) = exp| — 2;2 Z sn—ny—0)

Wi n=ng

(20)

where

A further simplification of (20) can be achieved by noting that
s(n) is completely contained in the observation interval, and
therefore the signal energy

ny+M—1
E., = Z sm—n—0=1

n=n,

is one for all values of ny and 0, i.e.

3 3 032

(aj )
| [91(9)=| |€XP(— )=€o
=1 1 26%"1

=

It is well known that the expressions in the exponents of (20) can
be interpreted as a matched filter operation, where the impulse
response is given by the time-reversed signal h(k) = s(—k).
Accordingly, the output signal of the matched filter y,(17q + 0)is
given by

ny+M—1

g+ 0 =Y (@im) —mPh(0 —n)

n=ngy

ny+M-—1

= Z @ (mh(8 — n)

n=ng
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where the second equality is due to the fact that s(n) is an
antisymmetric waveform. Consequently, it is not necessary to
know the values of m;. Making use of y,(n, + ), the following
expression of the likelihood function is obtained:

D—1 3
A®(n)) =§—§)Z{exp (Z 7 Vil +9)>
0=0

=1 Wz

3.0
+exp (‘ Z GTIYI(”O +0)

I=1

@b

The detector defined in (21) requires that the exponential of the
matched filter output is computed before the threshold test can be
applied. To simplify this procedure, an approximate structure is
suggested, based on a truncated Taylor expansion of the
exponential function

o xl 2
GXZZ—'— 1+X+7
i=0

(22)

This approx1mat10n is only valid for x| <1, and therefore
the SNR (a ) /a in (21) is assumed to be less than one.
Using this approx1mat10n the likelihood function in (21)
becomes

) e D-1 3 (a?z
A(‘I)(no))=@Z 2+Z o
0

Assummg that a and o2, , are lead-independent, i.e.
02 = g2, this express1on becomes

eo(ao)ZD .
+¥Dol ZZYI(”0+9)>’7

and i$ related to the weak signal detector described in HELSTROM
(1995). If we incorporate all terms that do not depend on the data
into the threshold #’, a BPC is detected whenever

= ¢ and

A(@(ng) =

D-1 3
> g+ 0>y’

0=0 1=1
where
, 8Dd% €
n = N2 (’7 - _)
eo(a’) 4
It may be of interest that the simplest possible Taylor series
approximation, making use of only (1 + x) in (22), results in a
meaningless detector, as (21) becomes identical to zero. Thus at
least three terms must be included in the approximation.
Furthermore, an approximation that includes terms with order
higher than two implies that the SNR no longer can be

incorporated in the threshold but must be estimated prior to
the computation of A'(®(ny)).

(23)
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Derivation errors in Appendix 2

May 14, 2004

In the paper:

Amstrém M., Garcia J., Laguna P., Pahlm O., y Sérnmo L. (2003).
Detection of body position changes using the surface Electrocardiogram. Med-
ical and Biological Engineering and Computing, vol. 41, n. 2, pp. 164-171.

It have been identified two derivation error in Appendix 2, that even not
affecting the final result are listed here for completeness of the work.

1 Error in equation (20) of Appendix 2

Equation (20) in appendix 2 should be

| b1 3 g0 MotM-1
A(®(ng)) = 3D Z Hek(@) [H exp <02l Z (pi1(n) —my)s(n —ng — 9))
0=0 k=1 =1 WL p=ng
3 0 no+M—1
+[[e (5 3" (eun) — m)s(n —no — 9>>
=1 Wi n=ng

2 Error in equation with no number previous to
equation (21) of Appendix 2

It should be written like

no+M-—1
ylno+0)= > (@i(n) —m)h(0 —n+no)

n=ngo

no+M-—1

= Z wi(n)h(0 —n + ngp)

n=ngo

Acknowledgement: Thanks to Ana Mincholé that point out this error



