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Automatic Construction of Multiple-Object
Three-Dimensional Statistical Shape Models:

Application to Cardiac Modeling
Alejandro F. Frangi*, Daniel Rueckert, Julia A. Schnabel, and Wiro J. Niessen

Abstract—A novel method is introduced for the generation of
landmarks for three-dimensional (3-D) shapes and the construc-
tion of the corresponding 3-D statistical shape models. Automatic
landmarking of a set of manual segmentations from a class of
shapes is achieved by 1) construction of an atlas of the class,
2) automatic extraction of the landmarks from the atlas, and
3) subsequent propagation of these landmarks to each example
shape via a volumetric nonrigid registration technique using
multiresolution B-spline deformations. This approach presents
some advantages over previously published methods: it can treat
multiple-part structures and requires less restrictive assumptions
on the structure’s topology. In this paper, we address the problem
of building a 3-D statistical shape model of the left and right
ventricle of the heart from 3-D magnetic resonance images.
The average accuracy in landmark propagation is shown to be
below 2.2 mm. This application demonstrates the robustness and
accuracy of the method in the presence of large shape variability
and multiple objects.

Index Terms—Atlas, cardiac models, model-based image anal-
ysis, nonrigid registration, statistical shape models.

I. INTRODUCTION

STATISTICAL models of shape variability or active shape
models (ASMs) [1] have been successfully applied to per-

form segmentation and recognition tasks in two-dimensional
(2-D) images. In building statistical models, a set of segmenta-
tions of the shape of interest is required, as well as a set of cor-
responding landmarks defined over the set of training shapes.

Manual segmentation and determination of point correspon-
dences are time-consuming and tedious tasks. This is particu-
larly true for three-dimensional (3-D) applications, where the
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amount of image data to analyze and the amount of landmarks
required to describe the shape increase dramatically in compar-
ison to 2-D applications. This work aims at automating the land-
marking procedure. That is, we still rely on the existence of a
manual segmentation of the shapes, but the process of landmark
extraction will be automated.

Several authors have proposed techniques to find point (land-
mark) correspondences, but only a few of them have indicated
or investigated their applicability in the field of statistical shape
models. Wanget al. [2] use a surface registration technique to
find 3-D point correspondences based on a metric matching
surface-to-surface distance, surface normals, and curvature.
The authors suggest that this technique could be used to build
3-D ASMs, but they do not report any results on statistical
model building. Kelemenet al. [3] report on the construction
of 3-D ASMs of neuroradiological anatomical structures. In
this method, the authors use a correspondence-by-parameteri-
zation approach to establish surface landmarks. The landmark
correspondence is defined in the parameter domain of an
underlying spherical harmonic parameterization. Although this
approach has been used to build ASMs, no explicit volumetric
or surface registration takes place. Lorenz and Krahnstover
[4] show an improved method for building dense surface
models that is similar to the one proposed in this paper. All the
input meshes corresponding to several examples are warped
onto the hand-placed landmarks of a single example; then a
coating procedure is used to resample each surface to solve
the correspondence problem. A mesh regularization step is
included to ensure that folds in the surface introduced by the
coating procedure do not appear in the final model. Unfortu-
nately, this technique does handle multiple-part objects as a
whole; therefore, it cannot be guaranteed that it is free from
inconsistencies arising from collisions between objects when
treating the parts separately.

To our knowledge, only a few authors have addressed
the problem of automatic construction of 3-D ASMs using
nonrigid registration [5]–[9]. The frameworks proposed by
Brett and Taylor [5], [6] are closely related to this work. In
these approaches, each shape is first converted into a polyhe-
dral representation. In the first approach [5], shape pairs are
matched using a symmetric version of the iterative closest point
(ICP) algorithm by Besl and McKay [10]. Using this method,
the authors were able to build 3-D ASMs by automatically
finding corresponding landmarks between surfaces. Surfaces
are represented by dense triangulations that are matched to
sparse triangulations (obtained by triangle decimation). The
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nodes of the sparse triangulation become the final landmarks.
One problem acknowledged by the authors is the possibility
of obtaining shape models with surface folding due to some
landmark groups (triples) matched in different order between
training examples. This is a consequence of the use of the
ICP technique, which is a purely local registration technique
and does not incorporate any connectivity constraints. In the
work by Brett and Taylor [6], this problem is addressed by
transforming the surface to a planar domain using harmonic
maps where connectivity constraints can be explicitly enforced.
This technique avoids invalid cross-correspondences but is
only applicable to single-part shapes that are topologically
isomorphic to a disk. The work by Fleute and Lavallée [7], [8]
is also closely related to our work. They use a multiresolution
nonrigid registration technique based on octree-splines. This
approach is a surface-based technique that registers shapes by
minimization of a distance measure. In contrast to their work,
we use a free-form volumetric nonrigid registration technique
based on maximization of two novel similarity measures,
coinedlabel consistencyand statistic. In addition, we provide
experiments that give empirical evidence of the convergence
of the atlas generation procedure, which is missing in [7], [8].
Finally, Subsolet al.[9] reported on a method for automatically
constructing 3-D morphometric anatomical atlantes that is
based on the extraction of line and point features and their
subsequent nonrigid registration. This method is very attractive
for applications where line features are evenly spread over the
whole object, as is the case in the skull for which the authors
illustrated their method. However, these features can be insuf-
ficient in modeling the heart since the cardiac chambers are
rather smooth. Moreover, the extraction of line features is not
trivial and may hamper the use of this technique in large-scale
databases due to lack of robustness.

Recently, Davieset al. [11] published a method to automati-
cally extract a set of optimal landmarks using the minimum de-
scription length (MDL) principle. Although this is a promising
method that has a sound mathematical formulation, it is still re-
quired to elucidate whether the optimal landmarks in the MDL
sense are also optimal in the sense of anatomical correspon-
dence. On the other hand, although the authors sketch how to
extend this method to 3-D, the extension does not seem trivial.
Experiments with 3-D shapes still need to be performed to show
its usefulness and computational feasibility, in particular with
multiple-part objects.

In this paper, a technique is introduced that tries to address
the shortcomings of point- or surface-based registration where
no overall connectivity constraints are imposed. Our method in-
troduces global constraints by matching shapes via a volumetric
nonrigid registration technique using multiresolution B-spline
deformation fields [12], [13]. Owing to the multiresolution na-
ture of the deformation field, the mappings between matched
shapes have been shown to be smooth [13]. Although in our ex-
perience this is not essential, an additional smoothness penalty
can be incorporated, which further prevents folding when re-
covering the deformation field. An important feature of our ap-
proach is that the same method for establishing correspondences
can be simultaneously applied to all the parts of a composite ob-
ject. This has not been previously investigated in [5]–[8].

This paper makes two main contributions. The first contri-
bution is methodological and lies in providing a generic frame-
work for automatic selection of corresponding landmarks in 3-D
shapes. The second contribution is of a more practical value and
lies in applying this technique to the construction of 3-D shape
models from 3-D cardiac magnetic resonance imaging (MRI) as
well as in addressing a number of application-specific issues.

Model-based analysis of cardiac images is an active area of
research—see e.g., a recent literature survey on 3-D model-
based techniques for functional analysis of cardiac images [14].
Model-based approaches have been used for several applica-
tions ranging from computation of global cardiac functional
parameters, mainly ejection fraction and left ventricular mass
[15]–[21], to local estimation of cardiac motion [22]–[26] and
stress [27]–[31]. Some authors have applied cardiac models to
cardiac scan planning [32] or to derive new descriptors of car-
diac function [26], [33]–[39]. A common denominator of these
methods is that shape description is performed using standard
modeling primitives such as, for instance, superquadrics [15],
[26], [39], [40], series expansions [17], [40], [41], constructive
solid geometry [32], or polyhedral representations [21], [23],
[35], [42], [43]. Shape constraints are either explicitly enforced
by the selected primitive (e.g., superquadrics) or viaad hocreg-
ularization terms in the shape recovery process.

In this paper, the use of 3-D statistical shape models to de-
scribe the shape of the left and right ventricle of the heart is pro-
posed. Although shape representation is based on standard trian-
gulated meshes, the model contains information of the average
location of each node in the mesh, its variability, and the cor-
relation between node locations inferred from a set of training
shapes. This information can be used to regularize the problem
of model recovery or image segmentation without the need of
anyad hocsmoothing constraints. However, this paper focuses
on the automatic construction of statistical shape models and
does not address the problem of shape recovery or segmenta-
tion, which is one of our future research issues.

This paper is organized as follows. Section II provides a sum-
marized background on statistical shape models. Section III fo-
cuses on a multiresolution free-form registration algorithm that
will be used in the landmarking procedure. In Section IV, our
proposed method for automatic landmarking is described. In
Section V, the method is applied to construct statistical models
of the left and right ventricle of the heart from 3-D MRI; em-
pirical evidence is given on convergence properties and recon-
struction errors. Finally, Section VI closes the paper with some
conclusions and directions for future research.

II. STATISTICAL SHAPE MODELS

Let denote shapes. Each shape consists
of 3-D landmarks,
that represent the nodes of a surface triangulation. Ob-
taining those 3-D landmarks is a nontrivial task
and presents the main topic of this paper. Each vector

is of dimension 3 and consists of the landmarks
. Moreover,

assume that the positions of the landmarks of all shapes are
expressed in the same coordinate system. These vectors form
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a distribution in a 3 -dimensional space. The goal is to
approximate this distribution with a linear model of the form

(1)

where is the average landmark vector,
is the shape parameter vector of the model, andis a

matrix whose columns are obtained by performing a prin-
cipal component analysis (PCA) of the covariance matrix

. The principal
components of are calculated as its eigenvectors, with
corresponding eigenvalues (sorted so that ). If
contains the eigenvectors corresponding to the
largest nonzero eigenvalues, we can approximate any shape of
the training set using (1), where and
is a -dimensional vector given by .

The vector defines the shape parameters of the ASM. By
varying these parameters, we can generate different instances of
the shape class under analysis using (1). Assuming that the cloud
of landmark vectors follows a multidimensional Gaussian dis-
tribution, the variance of theth parameter across the training
set is given by . By applying limits to the variation of , for
instance, , it can be ensured that a generated shape
is similar to those contained in the training class.

Although in this paper the statistical analysis is carried out
using PCA, there are other alternatives that may be considered,
such as independent component analysis [44].

III. M ULTIRESOLUTION NONRIGID REGISTRATION

In this section, a multiresolution free-form nonrigid registra-
tion algorithm is presented. This technique is employed in this
paper tofindcorrespondencesbetweenshapes. Incontrast tomost
registration literature, ouraimhere is tomatch labeled rather than
gray-level images, i.e., image segmentations where each voxel
value indicates the type of structure this voxel belongs to.

The matching algorithm summarized here is a multiresolu-
tion free-form nonrigid registration algorithm, which was for-
mulated by Rueckertet al. [12] and further developed by Schn-
abelet al. [13]. This algorithm manipulates a shape by embed-
ding it into a subsequently refined volumetric mesh, which de-
fines a continuous deformation field through a set of B-spline
basis functions. For each location in the reference shape, the
corresponding locations in the individual shapes are found to
obtain an optimal match. The corresponding optimal deforma-
tion field is obtained by maximizing a voxel similarity measure
on the basis of the corresponding labels. This maximization is
carried out using a standard gradient ascent algorithm. The reg-
istration method and two novel similarity measures for labeled
images are briefly summarized in the following paragraphs.

A. Transformation Model

Let be a transformation that maps
any point ( ) in the source image into the corresponding
target image coordinates ( ). The target image could be
an atlas or average shape defining the coordinate system in
which all other images will be expressed.

To accommodate for nonrigid deformations,will consist
of a global transformation and a nonrigid transformation ob-

tained in a coarse-to-fine manner , where is the number of
mesh subdivisions that take place in the multiresolution strategy

(2)

B. Global Transformation

The global transformation describes the pose and size of the
transformed shape with respect to the atlas. This can be accom-
plished with a global transformation in the form of a quasi-affine
model

(3)

where the coefficients parameterize the 12 degrees of
freedom of a generic affine transformation. In a quasi-affine
transformation only nine parameters are independent: transla-
tion , rotation , and anisotropic scaling

. The computation of these parameters is accom-
plished with a modified version of the method by Studholme
et al. [45]. The main modification is that we do not use a reg-
istration measure based on mutual information but eitherlabel
consistencyor the statisticsimilarity measure, as described
in Section III-D. However, we employ the same multiresolution
strategy for computing the registration parameters.

C. Local Transformation

To accommodate for detailed shape differences, the global de-
formation field has to be supplemented with a local deformation
model. The local deformation field is represented by a free-form
deformation (FFD) based on B-splines. The basic concept of
FFDs is to deform an object by embedding it into a volumetric
mesh of control points and subsequently manipulating the nodes
of the mesh. The mesh is deformed in a multiresolution fashion
by subsequently subdividing the mesh (i.e., decreasing the mesh
spacing). At any mesh resolution level, the control points are
smoothly interpolated by a set of B-spline basis functions that
define a continuous deformation field.

At each level of mesh resolution, the FFD is represented by
a tensor-product B-spline. Assume that we denote the domain
of the image volume as

. Let denote an mesh of
control points at level and with uniform spacing

, where is the initial mesh spacing. Then, the FFD at
level can be written as the 3-D tensor product of the familiar
one-dimensional cubic B-splines

(4)
where , , ,

, , ,
and where represents theth basis function of the B-spline
[46].

The control points act as parameters of the B-spline, and
the degree of nonrigid deformation that can be modeled depends
on the resolution level . The smaller the associated spacing
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, the more local the deformation is allowed to be. On the
other hand, the computational complexity of the algorithm is
approximately inversely proportional to the spacing parameter.
The tradeoff between deformation flexibility and computational
complexity is mainly an empirical choice, which is determined
by the accuracy required to deform the atlas into the individual
shapes. In our experiment with cardiac data sets, we have used
a deformation field with three mesh subdivisions ( ) and
an initial spacing mm.

D. Similarity Measure for Labeled Image Registration

Since the correspondences of structures across both images
are encoded explicitly in the labeling, we are only interested
in maximizing the overlap of structures denoted by the same
label in both images. Therefore, we have used two registration
measures that favor the mapping of identical labels. We have
coined these measureslabel consistencyand statistic.

1) Label Consistency:Assume that is the joint
probability of labels and in the source (A) and target (B)
shapes, respectively. This can be estimated as the number of
voxels with label in image and label in image divided by
the total number of voxels in the overlap region of both images.
The label consistency measure is then defined as

(5)

Label consistency is a measure of how many labels of all the
labels in the source shape are correctly mapped into the target
shape. When the label consistency measure is zero, none of the
source labels has been correctly mapped into the target shape. If
all reference labels are correctly matched, the label consistency
measure yields one.

2) The Statistic: The measure is inspired in a statistic used
frequentlyinbiomedicalresearchtoassesstheagreementbetween
tworatersmeasuringthesamequantityorperformingaclassifica-
tion task [47]. For a given voxel, each image can be considered as
an observer who assigns a class label to it. Therefore, comparing
labeled imagesisequivalent tocomparingtheagreementbetween
two observers. This statistic is defined as follows:

(6)

(7)

(8)

where , , and are the joint probability den-
sity and marginal probability densities for the labels in the im-
ages and . The statistic is a measure of agreement between
two classifications that is corrected for chance agreement.
To interpret the values of thestatistic, one can refer to standard
tables provided in the literature [47]. This statistic has a max-
imum value of one, and values above 0.9 are usually regarded
as very good agreements.

IV. A UTOMATIC LANDMARKING

A. Overview

Ideally, a landmark is an anatomically characteristic point that
can be uniquely identified on a set of shapes. However, anatom-
ical landmarks are usually too sparse to accurately describe a 3-D
shape. Therefore, we will consider pseudo-landmarks,i.e.,land-
marks lying on the shape’s surface and determining its geometry.

Assume that segmented shapes of the structure of interest
are available. These segmentations constitute the training set

, where . Each shape in the training set is
represented by alabeled imagewhose voxel values belong to a
label set . To generate the landmarks for theshapes, a shape
atlas is constructed and landmarked; these landmarks are fi-
nally propagated back to theshapes (Fig. 1). The following
sections describe these three steps in detail.

B. Preprocessing

The automatic landmarking algorithm can be applied to a
set of previously segmented structures. In our application, three
main structures of the heart have been segmented from a number
of volunteer scans. Each segmentation consists of manual iden-
tification of the background (BG), the left ventricular blood pool
(LV ) and myocardium (LV ), and right ventricular blood
pool (RV ) (see Fig. 2). In the segmentation of the left ven-
tricle, the papillary muscles are considered part of the blood
pool, as is customary in functional cardiac analysis. Each seg-
mentation is represented as a labeled image, where each voxel
is labeled according to the tissue type to which it belongs (
BG LV LV RV ).
Owing to the large voxel anisotropy in MR short-axis acquisi-

tions of functional cardiac data sets, manual segmentations have
significant staircase artefacts in the direction of the long axis
of the heart. To facilitate image registration and to smooth out
those artefacts, shape-based interpolation [48], [49] has been ap-
plied to obtain labeled images of isotropic voxel size (Fig. 3).
To preserve the diameter of the ventricles in the basal segmen-
tation slices, this slice was copied (repeated) again toward the
base prior to computing the distance transform required to per-
form shape-based interpolation. Once the distance transform is
linearly interpolated, it is thresholded to obtain a binary volume
and subsequently masked to remove the extra slice. In this way,
the segmentations before and after interpolation have the same
basal diameter. In our opinion, this is a conservative way of re-
specting the ventricular dimensions in the absence of label in-
formation beyond the most basal slices.

C. Atlas Construction

Given a set of labeled images that are instances of an anatom-
ical structure, a shape atlas can be viewed as an average labeled
imagerepresentationof theshapeunderconsideration. In thenext
section, a method to obtain an atlas for bivalued labeled images is
introduced, which will be subsequently extended to labeled im-
ages containing multiple, and possibly nested, structures.

1) Atlas Construction in Single Object Shapes:Let us as-
sume that a set of training shapes is available and that
each shape is represented by a bivalued labeled image. That
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Fig. 1. Overview of the automatic landmarking framework. All individual data sets are matched to an atlas via a quasi-affine transformation (T ) and a nonrigid
transformation (T ). The landmarks in the atlas can then be copied to the individual patients. The nonrigid deformation is subsequently reversed. Thus, PCA is
carried out in a space where all shapes are aligned with the atlas (thenatural coordinate system,explained in Section IV-C3). The principal modes of variation will
therefore account for nonrigid deformations and not for pose or size differences.

(a)

(b)

Fig. 2. Example MR image and manual segmentation from the training set
(short-axis and simulated long-axis view). The labeled images in (b) were
manually extracted from 3-D cardiac MR scans in (a) and subsequently
interpolated using shape-based methods. In each slice, the LV blood pool (dark
gray), LV myocardium (light grey), and RV blood pool (white) were manually
outlined. The papillary muscles were included in the segmentation of the blood
pool, as is customary in clinical practice. The labeled image shown in (b) has
been resampled using shape-based interpolation.

is, the label set contains only two labels corresponding to the ob-
ject and background segmentations. For the sake of simplicity,
we assume that is the set of shapes after they have been
aligned to a reference coordinate system.

Let and denote the shape in atlas-aligned
coordinates and its signed Euclidean distance trans-
form [50], respectively. The signed distance transform
of an average shape can be obtained by computing

. The average shape can
be retrieved by thresholding the distance transform map to its
zero-level set. We coin this averaging procedureshape-based
blending.

As was mentioned earlier, prior to shape-based blending,
all shapes have to be aligned into an atlas-aligned coordinate
system. As the atlas is still to be constructed, the initial coor-
dinate system can be chosen arbitrarily to coincide with that
of any of the shapes in the training set. To reduce the bias
introduced by the selection of the initial reference shape, an
iterative algorithm has been developed. In the first iteration,
one shape of the training set is randomly selected to be the
atlas. Subsequently, all other shapes in the set are registered
to the current atlas using the global registration technique
presented in Section III-B and the label-based similarity
measures introduced in Section III-D. After registration, all
shapes are blended and a new atlas is generated. This new atlas
then becomes the current atlas, and the process is iterated until
the difference between the current and new atlas falls below
a certain threshold. This can be monitored, for instance, by
defining a suitable measure of label agreement between two
images. In the results section, the convergence properties of
this algorithm and the influence of the randomly selected initial
reference are investigated.

2) Atlas Construction in Multiple-Part Shapes:Let us as-
sume that a set of training shapes is available and that each
shape is represented by a labeled image, in which objects
are represented by distinctive labels.

The atlas construction algorithm as described above applies
to bivalued labeled images for which the distance transform is
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(a)

(b)

(c)

Fig. 3. Owing to voxel anisotropy, the labeled images were resampled to
create isotropic geometric models. (a) shows an original labeled image with
large anisotropy in the axial direction. (b) shows the corresponding shape-based
interpolated image. (c) overlays the two previous images for comparison.

defined. However, it is possible to generalize the method to mul-
tiple-part shapes, which is needed for cardiac modeling. In fact,
to extend the method of the previous section, we only need to
specify a method for shape-based blending of multivalued im-
ages. The atlas alignment procedure used in this paper readily
extends from single-object to multiple-object labeled images. In
the following, we discuss our method for shape-based blending
in cardiac labeled images.

Fig. 4 schematically represents a typical arrangement of
LV , LV , and RV as extracted manually from cardiac
MR images. This figure also indicates how the cardiac shape
can be decomposed into three subshapes: LV, LV LV ,

and RV . By construction, LV LV always embeds
LV , and both of them are nonoverlapping structures with
respect to RV . Each one of these subshapes can now be rep-
resented as a separate bivalued labeled image. This transforms
the problem of shape-based blending of a multivalued labeled
image into problems of shape-based blending of bivalued
labeled images. After the average subshapes have been
generated, all of them are combined into a new labeled image
by taking the initial arrangement and labeling into account. An
example of shape-based blending with two shapes consisting
of three objects is shown in Fig. 5.

3) Natural Coordinate System:The atlas construction phase
is iterative in order to reduce the bias toward the initial shape
used as the initial “atlas.” However, the pose and size of the atlas
are still biased toward those of this initial shape. This fact can
have a negative influence on the landmark propagation, as we
will explain in the following. An atlas whose pose is biased to-
ward a specific subject may lead to a privileged situation of that
subject in the nonrigid warping phase. To remove any remaining
bias, we use a method similar to that presented in Rueckertet
al. [51] to define anatural coordinate systemfor statistical de-
formation models.

Suppose that we havedeformation fields . They map the
atlas constructed with the iterative algorithm of Section IV-C2
into each individual in . These deformation fields can be re-
covered with the nonrigid registration algorithm described in
Section III.

We define now a natural coordinate system, which will be the
coordinate system requiring the least residual nonrigid deforma-
tion to explain the anatomical variability across all individuals.
Based on a point in the space of the reference subject, we can
find the corresponding point in its natural coordinates by ap-
plying the average deformation to

(9)

An interpretation of this natural coordinate system is shown
in Fig. 6. Applying the average deformation vector , a point

in the coordinate system of subjectshould map the point
into the point in natural coordinates. Applying the average

deformation vector to the corresponding point in the co-
ordinate system of subject should also map it to the point
in natural coordinates. Thus, assuming a perfect nonrigid reg-
istration that establishes a one-to-one correspondence between
the anatomies of different subjects, the choice of the reference
subject becomes irrelevant when constructing a natural coordi-
nate system, since pointsare independent of the choice of the
reference subject.

In conclusion, before proceeding with the actual autoland-
marking, the atlas is warped into its natural coordinate system,
where there is no influence of the initial shape. This unbiased
atlas is the one used as a template to extract landmarks and sub-
sequently propagate them according to Fig. 1.

D. Landmark Extraction

After an atlas has been constructed and mapped into natural
coordinates, it needs to be landmarked. In this paper, we shall
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Fig. 4. Two-chamber model decomposition. To apply shape-based blending, the heart is decomposed into three bivalued labeled images representing, from left
to right, the right ventricular blood pool (RV), the left ventricular interior (LV LV ), and the left ventricular blood pool (LV ), respectively.

(a) (b)

(c) (d)

Fig. 5. Shape-based blending of label images. (d) illustrates the blending result of the two shapes of (a) and (b). (c) shows the two blended images mixed for
comparison. All figures contain short-axis and simulated long-axis views.

(a) (b)

Fig. 6. Natural coordinate system. In this space, the coordinates of the atlas are not biased toward the initial shape under the assumption of a perfectnonrigid
registration.



1158 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 21, NO. 9, SEPTEMBER 2002

(a) (b)

Fig. 7. Atlas construction and landmarking. (a) shows the result of the iterative atlas construction algorithm as three orthogonal views. (b) visualizes a
surface rendering of the atlas with the wire frame joining the extracted landmarks. The landmarks have been extracted using marching cubes with subsequent
mesh decimation (95% decimation factor). The examples shown were generated using the� statistic measure, although similar results were obtained for the
label-consistency registration measure.

consider surface landmarks only. For cardiac modeling, land-
marks for the endocardial and epicardial wall of the left ventricle
and for the endocardial wall of the right ventricle can be ex-
tracted. To landmark the atlas automatically, themarching cubes
[52] algorithm is applied. This algorithm generates a dense tri-
angulation of the boundary isosurfaces that can be further dec-
imated to reduce the amount of triangle nodes. The decimation
process can be implemented in such a way that it preserves the
accuracy of the surface representation in the original triangula-
tion to a desired tolerance. We use the method by Schroederet
al. [53], which takes into account the curvature of the surface to
keep the density of the triangles higher around relevant edges but
decreases the number of triangles in flat areas. The nodes in the
decimated triangulation form the landmarks of the shape. In our
implementation of Schroeder’s algorithm, we specify a target
decimation rate (95%) subject to the constraint that the error of
the decimated mesh is kept to a given tolerance with respect to
the original mesh. The tolerance we used was the in-plane res-
olution of our images (1.2 mm).

By using marching cubes, a dense and approximately even
distribution of landmarks is obtained. Alternatively, any other
automatic algorithm for mesh extraction from a binary (labeled)
image can be applied,such assurface nets[54] or thewrapper
algorithm [55]. Note that, as an alternative to these algorithms,
an expert could manually localize anatomical landmarks in the
atlas. Anatomical landmarks, however, may be too sparse to rep-
resent the shape of 3-D structures and may also be difficult to
accurately localize.

E. Landmark Propagation

Once the atlas is constructed, mapped to the natural coor-
dinate system, and landmarked, its landmarks can be propa-
gated to the individual shapes. This is carried out by warping
each sample labeled volume into the atlas with a transformation

that is composed of a quasi-affine () and a
nonrigid ( ) transformation. The transformation accounts
for global (pose and size) differences between the atlas and each
sample volume, while the transformation accounts for local
shape differences. The recovering ofis carried out using the
algorithms described in Section III.

Once the full transformation has been found, the landmarks
of the atlas can be propagated to the natural coordinate system
by applying the inverse of the nonrigid transformation ( ).
This process is repeated for each sample shape. As a result, a
set of landmarks is obtained that describes shape variations with
respect to the atlas. Since these landmarks are now in natural co-
ordinates, pose and size variations are explicitly eliminated from
further analysis. These transformed landmarks are subsequently
used as the input for PCA, as indicated in Fig. 1.

Fig. 1 suggests that each sample shape is warped to the atlas.
In this case, the inverse of the deformation field has to be com-
puted to propagate the landmarks. However, this mapping does
not necessarily exist. This was illustrated for the sake of con-
ceptual simplicity only. From a computational point of view, it
is more convenient to warp the atlas to each sample shape and
use the direct deformation field for landmark propagation.

V. RESULTS

A. Data Sets and Preprocessing

Fourteen adult subjects, free of clinical cardiovascular dis-
ease, were scanned on a 1.5-T MR scanner (Philips ACS-NT,
PowerTrak 6000 Gradient System, Philips Medical Systems,
Best, The Netherlands) using an ECG-triggered Echo Planar
Imaging (FFE-EPI) sequence. Cine acquisitions consisting of
eight to ten short-axis slices of the heart in 18–20 phases of
the cardiac cycle were performed. Scan parameters were repeti-
tion time: TR – ms; echo time: TE – ms; flip
angle: ; slice thickness: 10 mm; a 256256 image
matrix; and a 300 -mm field-of-view.

From the acquired temporal sequence of each volunteer, the
end-diastolic frame was manually segmented, as indicated in
Section IV-B. Subsequently, all segmentations were resampled
to isotropic voxels with size equal to the in-plane resolution (1.2
mm) using shape-based interpolation [48], [49], as described in
Section IV-B.

B. Atlas Construction

Fig. 7 shows the result of the atlas building process described
in Section IV-C. The shape-based blending procedure captures
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Fig. 8. Convergence of the atlas construction algorithm.� statistic and thelabel consistencysimilarity measures between two consecutive atlases as a function of
the iteration numbern. In the inset of each plot, the similarity measure is indicated. The graph denoted with (�) corresponds to the evolution of thelabel consistency
measure, while the graph with (�) corresponds to the evolution of the� statistic. Each curve is the average of the convergence curve resulting from initializing the
atlas building procedure with one of the 14 shapes.

the global shape of the ventricles without an apparent bias in the
wall thickness at any particular sector.

The convergence of the iterative atlas construction and the ef-
fect of different initial shapes in the generation of the atlas have
also been studied. Fig. 8 plots thestatistic between two suc-
cessive iterations of the algorithm of Section IV-C. The same
curves were generated for the 14 atlantes obtained by using
each of the 14 subjects as initial shapes. For each atlas and both
registration measures used in the atlas building procedure, we
show the evolution of both metrics as a function of the iter-
ation number. After two iterations, the agreement is excellent
( ) and the label consistency very high (LC ). It
is notable that both metrics seem to have a different sensitivity
to matching, as their dynamic range is different. The plots also
indicate that the convergence is not monotonous but tends to
level out after a few iterations. This could be caused by marginal
changes in the registration measure due to small mismatches at
boundaries when working with labeled images. In fact, there is
hardly any visual difference between atlantes in successive iter-
ations after the third iteration. Given that this process is reason-
ably fast and to avoid any residual bias, we used the atlas of the
fifth iteration in this study.

Another way of assessing the influence of the initial shape
is to create atlantes with all possible initial shapes, map all of
them into natural coordinates, and compute the corresponding
shape-based average atlas. Subsequently, the mean, standard de-
viation, and maximum distance between the boundaries of each
atlas and those of the average atlas can be computed and aver-
aged (Fig. 9). Table I shows the average mean, standard devia-
tion, and maximum error for each part of the model. The average
maximum error is always below 4 mm and, therefore, is on the
order of the voxel dimensions (1.21.2 10 mm ).

C. Statistical Shape Models
To construct a statistical model from the cardiac atlas,

landmarks were extracted automatically from the atlas using
marching cubes and subsequent mesh decimation (95% deci-
mation ratio). This procedure yielded 1352 (Kappa) and 1304
(LC) landmarks for the left ventricular epicardial surface, 679
(Kappa) and 631 (LC) landmarks for the endocardial surface,
and 1841 (Kappa) and 1693 (LC) landmarks for the right
ventricular endocardial surface.

This table reports on the errors of a left ventricle model
and a combined left and right ventricle model, respectively.
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(a)

(b)

Fig. 9. Contours in three planes of the atlantes created starting with all
possible initial shapes after mapping into natural coordinates overlaid on the
atlas image. There is very little difference between shapes, as indicated by the
close agreement between contours.

In the former, only the left ventricle segments (LV and
LV ) were taken into account in the nonrigid registration
and landmark propagation procedures. In the latter, both the
left ventricle (LV and LV ) and the right ventricle (RV )
were nonrigidly registered to the atlas, and the landmarks were
subsequently propagated.

Figs. 10 and 11 show the first five modes of variation of the
two-chamber model constructed using the kappa statistic and
label consistency as registration measures, respectively. It is re-

TABLE I
AVERAGE MEAN, STANDARD DEVIATION, AND MAXIMUM DISTANCES

BETWEEN THE ATLANTES CREATED STARTING WITH ALL POSSIBLE

INITIAL SHAPES AND THE AVERAGE ATLAS OF ALL ATLANTES IN

NATURAL COORDINATES

markable that there is hardly any difference in the modes. This
seems to support the idea of a high independency of the model
construction procedure with respect to the matching metric.

Fig. 12 indicates the percentage of the total explained vari-
ance as a function of the number of modes. Once corresponding
landmarks are available, one is free to include or exclude the
landmarks corresponding to a certain substructure. The more
substructures that are incorporated, the larger the required
number of modes to explain a given variance since the overall
shape variability has been increased.

To quantitatively assess the performance of the constructed
models,wehave analyzed the reconstruction errorbyperforming
several leave-one-out experiments. The landmarks of all but one
data set were used to build a statistical model. This model was
subsequently used to reconstruct the set of landmarks not in-
cluded in the PCA. The same experiment was repeated by taking
out from the PCA, one in turn, each of the sets of landmarks.
Finally, the average reconstruction error over the leave-one-out
experiments was computed. Fig. 13 shows the mean square
reconstruction error as a function of the number of modes used
in shape reconstruction. Since our training set is relatively small
and the shape variability is quite large, these experiments do
not reveal much information on the generalization ability of the
models. However, they provide a first estimate that could be
refined by enlarging the database of shapes.

D. Automatic Landmark Propagation Performance

To quantify the ability of the technique to map corresponding
landmarks, we have selected a set of seven landmarks in each
subject and in the atlas built thereof. They are indicated in
Fig. 14(a). Three observers were asked to identify these points
twice for each subject in two independent sessions. The same
point set was pinpointed twice in the atlas. Subsequently, the set
of landmarks in the atlas was mapped into each subject using
the deformation fields that were computed in Section IV-E, and
a number of performance measures were computed [Fig. 14(b)].
We have calculated the intraobserver variability of the 3-D
position of the landmarks placed manually in subject space.
Also, we computed the intraobserver variability, measured in
subject space, corresponding to the landmarks of the atlas after
propagation through the deformation field. For each landmark,
we calculated the average intraobserver variability over all
subjects. Table II reports the mean intraobserver variability of
the three observers. The variability in the automatic landmarks
indicates how the uncertainty in manual placement in the
atlas—of a similar magnitude to that of manual placement in
subject space—propagates through the deformation fields as an
uncertainty in the location of automatic landmarks.
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Fig. 10. Shape instances generated using the 3-D two-chamber model and the� statistic registration measure from 14 cardiac data sets. The instances are generated
by varying a single shape parameter, fixing all others at zero standard deviations from the mean shape. This two-chamber model consists of 679 LV endocardial
nodes, 1352 LV epicardial nodes, and 1841 RV endocardial nodes.

Table III reports on the interobserver variability for manual
landmarking in subject space and that of the landmarks manu-
ally placed in the atlas and then propagated into subject space.
The latter variability measures the effective uncertainty in the
position of the automatic landmarks when considering that they
have been obtained from the propagation of already uncertain
(manual) landmarks.

Finally, it is interesting to compute an estimate of the average
distance (error) between the landmarks placed manually in sub-
ject space and those propagated to subject space from the atlas.
To this end, the average position of the landmarks of all ob-
servers and all sessions has been used as the “gold standard”
[textured bullet in Fig. 14(b)]. Table IV gives the average dis-

tance in subject space between the gold-standard landmarks in
subject space and in atlas space after being mapped into subject
coordinates. From these experiments, it is possible to state that
the error in the automatic landmark placement is, on average,

2.2 mm. This is about two pixels with the current in-place
image resolution and only moderately worse than the interob-
server variability in manual landmarking.

VI. DISCUSSION ANDCONCLUSION

This paper has presented a method for the automatic construc-
tion of 3-D statistical shape models. The technique is based on
the automatic extraction of a dense mesh of landmarks in an
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Fig. 11. Shape instances generated using the 3-D two-chamber model and the label-consistency registration measure from 14 cardiac data sets of the heart. The
instances are generated by varying a single shape parameter, fixing all others at zero standard deviations from the mean shape. This two-chamber model consists
of 631 LV endocardial nodes, 1304 LV epicardial nodes, and 1693 RV endocardial nodes.

atlas constructed from a set of training shapes. These landmarks
are subsequently warped by a nonrigid deformation field to each
shape in the training set. The method is able to treat single- and
multiple-part shapes.

The first part of the proposed technique involves the building
of an atlas from a set of example shapes. In Section V, we have
presented experimental results supporting the hypothesis that
this procedure is convergent. Moreover, different initial shapes
seem to bias only marginally the final atlas when it is mapped
into natural coordinates. Therefore, for practical purposes, the
procedure of atlas construction can be considered to yield a
unique solution. In the work by Fleute and Lavallée [7], [8],

a similar algorithm was used for building the average model
(atlas). However, the atlas construction was performed on a sur-
face representation of the shapes and required a high-resolution
reference shape to initialize the iterative procedure. Finally, no
experimental evidence was reported with respect to the conver-
gence of the atlas construction algorithm nor to the selection of
the initial shape (uniqueness).

An alternative to our iterative method of atlas construction is
the tree-based approach presented by Brett and Taylor [5]. This
hierarchical strategy is attractive since it gives a unique (noniter-
ative) way to build an atlas from a given set of examples. How-
ever, one problem of Brett’s method is that the training shapes
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Fig. 12. Percentage of total shape variance versus the number of modes used
in the 3-D ASM. The total number of landmarks was 3872 (kappa) and 3628
(LC) landmarks for the two-chamber heart model and 2550 (kappa) and 2324
(LC) landmarks for the left ventricular model, respectively. Note that as the
two-chamber and LV models were constructed (landmarked) independently,
marching cubes does not yield exactly the same number of nodes for a given
substructure (e.g., LV epicardial surface) in both models.

(a)

(b)

Fig. 13. Reconstruction error in the leave-one-out experiments for the left
ventricle and two-chamber models and different registration measures used in
model building.

have to be ranked according to a pairwise match quality. This
requires that all possible pairs have to be matched and scored
before the tree is built. Brett presented results with only eight
shapes [5], but ordering the examples according to the matching
quality would be cumbersome for a more realistic amount of
training shapes. For a total number ofshapes, it is necessary
to compute pairwise matches to build
the average shape. Our approach obtains the average shape in

matches, where is the total number of it-
erations required for convergence. Section V provides experi-
mental evidence that after about five iterations, the atlas shape
stabilizes.

Our method for building the mean shape model is based on
averaging shapes in the domain of their distance transforms. A
similar strategy was proposed by Leventonet al. [56] to incor-
porate statistical constraints into the level-set approach to image
segmentation. However, in that work, PCA is applied on the dis-
tance transform domain and not on a surface representation. As a
consequence, the number of degrees of freedom is considerably
larger than in our method. There is an intrinsic limitation in both
our method and that of Leventonet al.Averaging distance trans-
forms of several shapes does not necessarily yield a valid mean
shape representation. It is easy to show, for instance, that in the
case of a large misalignment between the averaged shapes, this
procedure can introduce topological changes. Although we did
not observe this problem in our experiments, this can be a po-
tential source of failure of the technique when building models
of very complex structures.

The proposed technique could be used with any nonrigid reg-
istration algorithm. In this sense, the method is a generic frame-
work open to future investigation. Currently, a multiresolution
version of the FFD nonrigid registration of Rueckertet al.[12] is
used to match labeled images. Two novel registration measures
suitable for labeled images were used. The atlantes and models
built with both measures were hardly distinguishable from each
other, yielding, on average, a similar performance in terms of
landmark propagation accuracy. We believe that both metrics
are equally useful for automatic landmarking, although label
consistency is a computationally slightly more efficient mea-
sure.

The use of nonrigid registration as a method to establish shape
correspondences imposes a constraint on the type of shapes that
can be handled. It is assumed that the class of shapes has a
well-defined topology. If there are substructures in one image
not represented in the other image to be matched, the transfor-
mation would have to “destroy” those parts. This situation could
arise when building a model of normal and abnormal medical
structures where some parts in the latter are missing because
of a diseased state or surgical procedure. However, establishing
correspondences in these mixed models also remains an ill-de-
fined problem with any of the previously published approaches
[5]–[9].

Results of the construction of a one- and two-chamber
cardiac model have been presented. Experiments were carried
out to establish the ability of the models to generalize to shapes
not present in the training set. The average reconstruction error
in the two-chamber model was below 3.8 mm when the number
of nodes was sufficient to explain 90% of the shape variability.
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(a) (b)

Fig. 14. Autolandmarking performance evaluation. (a) Seven landmarks were identified at the basal and apex level: LV apex epicardial (Lmk # 1), LV apex
endocardial (Lmk # 2), RV apex epicardial (Lmk # 3), LV basal endocardial centroid (Lmk # 4), anterior basal septum (Lmk # 5), posterior basal RV-septum(Lmk
# 6), middle basal RV-septum (Lmk # 7). (b) Definition of the computed performance measures for one of the landmarks: landmarks marked with� are the original
manual landmarks of a subject (left) or the manual atlas landmarks propagated to subject space (right); the points marked with� are the average location of two
sessions for a given observer (one to three). Finally, the textured bullet is the average landmark location over all three observers. Here�intra and�inter are
the intra- and interobserver variability for observeri, respectively, and" is the error between the centroids of the manual and propagated landmark clouds.

TABLE II
INTRAOBSERVER VARIABILITY DUE TO MANUAL AND

AUTOMATIC LANDMARKING

TABLE III
INTEROBSERVERVARIABILITY DUE TO MANUAL AND

AUTOMATIC LANDMARKING

TABLE IV
AVERAGE DISTANCE BETWEENMANUAL AND AUTOMATIC LANDMARKS

In our experiments, we have not observed any problems of
wrong correspondences leading to flipping of triangles or
surface folding. This is an important improvement compared
to the method of Brett and Taylor [5]. Also, our method is less
restrictive in terms of the shapes that can be modeled. This is
an important advantage over the extended method of Brett and
Taylor [6], which is based on harmonic maps and therefore
limited to shapes that are isomorphic to a disc. The proposed

3-D extension of the recent method by Davieset al. [11] has a
similar problem, as it relies on a surface parameterization only
applicable to shapes isomorphic to a sphere.

Our model can be classified as a statistical surface model. One
of the main differences between our approach and the work by
Brett and Taylor [5], [6] and Fleute and Lavallée [7], [8] is that
we use a volumetric nonrigid registration algorithm as opposed
to their surface-based approaches. As a consequence, after non-
rigid registration, we are able to recover a dense volumetric dis-
placement field. This could be used to propagate landmarks lo-
cated inside the myocardium or blood pools producing a statis-
tical solid model. To achieve this goal, most likely gray-level in-
formation will have to be included in the atlas construction and
landmark propagation procedures. This information could pro-
vide the required textural information to match internal struc-
tures.

This paper has shown that the combination of our atlas gener-
ation method and the multiresolution FFD nonrigid registration
algorithm is able to cope with the large deformations involved
in intersubject matching of cardiac shapes. We had previously
experimented with a single-level version of the FFD registra-
tion technique. Although with that approach we were able to
propagate the landmarks of anatomical structures with moderate
shape variability (deep structures of the brain and bone struc-
tures) [57], it was unsuccessful in the application presented in
this paper. To cope with large shape variations, a multiresolu-
tion extension [13] of the free-form registration algorithm pro-
posed by Rueckertet al. [12] was applied. In this approach, the
nonrigid transformation is recovered by increasing the mesh res-
olution by subsequent subdivision. Gross shape warping takes
place at the coarsest resolution, while shape details are captured
at the finest resolution.

With this technique, we have been able to automatically place
a set of specific landmarks with an average accuracy of about 2.2
mm and a precision of about 1.5 mm. In the same experiments,
the precision intrinsic to manual landmarking was of about 0.8
mm. These figures are quite encouraging and indicate that au-
tomatic landmarking is feasible. To the best of our knowledge,
this is the first study where the errors in automatic landmark
placement are quantitatively assessed.
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Our future work will focus on applying our method to model-
based cardiac image segmentation and analysis. First, we are in-
terested in enlarging the database of training shapes to capture
the main modes of shape variation of cardiac chambers for a
large population and not only for those of our reduced training
set. Although this paper provides a proof-of-concept for our au-
tomatic landmarking algorithm, it is necessary to improve the
statistics of the model to achieve an accurate segmentation. For
this purpose, we have recently completed a study in which a
previous version of this algorithm was applied to images of 100
subjects of the Framingham heart study,1 of which the 14 shapes
of this manuscript are a subset. This study will be published else-
where.

All the shapes in our training set were acquired at end dias-
tole. However, the fact that the nonrigid registration algorithm
can cope with large intersubject variability suggests that the
same experiments could be repeated for different phases of the
cardiac cycle to build a statistical spatio temporal model of the
heart. This is a line of future investigation.

Finally, a strategy has to be devised to adapt the model mesh
to segment cardiac MR images. This could be achieved, for in-
stance, by applying a method similar to the 2-D deformation
procedure of active shape models [1]. For each landmark in
the model, a statistical model of the intensity profile (or some
other suitable image feature) along the surface normal can be
computed. The model mesh could be deformed by moving the
nodes along the direction of the normals to the position best
matching the intensity with the statistical profile model. This
method would provide an image-derived displacement for each
node. The displacements applied to update the mesh can be ob-
tained by projecting the suggested displacements onto the sub-
space spanned by the main modes of variation. This projection
step would naturally incorporate shape constraints in the defor-
mation of the mesh.

In conclusion, a method was presented to construct a shape
atlas and to derive a statistical model of 3-D shape variability.
We have demonstrated that this method is applicable to the con-
struction of a statistical shape model of the cardiac chambers.
To the best of our knowledge, this work is the first that uses 3-D
statistical shape models to describe the left and right ventricle
of the heart. Our future work will concentrate on the application
of this model to cardiac image segmentation and analysis.
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