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Automatic Construction of Multiple-Object
Three-Dimensional Statistical Shape Models:
Application to Cardiac Modeling

Alejandro F. Frangi*, Daniel Rueckert, Julia A. Schnabel, and Wiro J. Niessen

Abstract—A novel method is introduced for the generation of amount of image data to analyze and the amount of landmarks
landmarks for three-dimensional (3-D) shapes and the construc- required to describe the shape increase dramatically in compar-
tion of the corresponding 3-D statistical shape models. Automatic s, 16 2-D applications. This work aims at automating the land-
landmarking of a set of manual segmentations from a class of i d That i fill rel th ist f
shapes is achieved by 1) construction of an atlas of the class,rnar Ing proce urg. atis, we still rely on the existence or a
2) automatic extraction of the landmarks from the atlas, and Manual segmentation of the shapes, but the process of landmark
3) subsequent propagation of these landmarks to each example extraction will be automated.
shape via a volumetric nonrigid registration technique using  geyeral authors have proposed techniques to find point (land-
multiresolution B-spline deformations. This approach presents mark) correspondences, but only a few of them have indicated

some advantages over previously published methods: it can treat = . . . ) I . o
multiple-part structures and requires less restrictive assumptions OF investigated their applicability in the field of statistical shape

on the structure’s topology. In this paper, we address the problem models. Wanget al. [2] use a surface registration technique to
of building a 3-D statistical shape model of the left and right find 3-D point correspondences based on a metric matching
ventricle of the heart from 3-D magnetic resonance images. gyrface-to-surface distance, surface normals, and curvature.

The average accuracy in landmark propagation is shown to be : . .
below 2.2 mm. This application demonstrates the robustness and The authors suggest that this technique could be used to build

accuracy of the method in the presence of large shape variability 3-D ASMSs, but they do not report any results on statistical

and multiple objects. model building. Kelemeret al. [3] report on the construction
Index Terms—Atlas, cardiac models, model-based image anal- ©f 3-D ASMs of neuroradiological anatomical structures. In
ysis, nonrigid registration, statistical shape models. this method, the authors use a correspondence-by-parameteri-

zation approach to establish surface landmarks. The landmark
correspondence is defined in the parameter domain of an
underlying spherical harmonic parameterization. Although this
TATISTICAL models of shape variability or active shapeapproach has been used to build ASMs, no explicit volumetric
S’nodels (ASMs) [1] have been successfully applied to peor surface registration takes place. Lorenz and Krahnstover
form segmentation and recognition tasks in two-dimensiond] show an improved method for building dense surface
(2-D) images. In building statistical models, a set of segmentaodels that is similar to the one proposed in this paper. All the
tions of the shape of interest is required, as well as a set of comput meshes corresponding to several examples are warped
responding landmarks defined over the set of training shapesnto the hand-placed landmarks of a single example; then a
Manual segmentation and determination of point correspatpating procedure is used to resample each surface to solve
dences are time-consuming and tedious tasks. This is partithe correspondence problem. A mesh regularization step is
larly true for three-dimensional (3-D) applications, where thiacluded to ensure that folds in the surface introduced by the
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nodes of the sparse triangulation become the final landmarksThis paper makes two main contributions. The first contri-
One problem acknowledged by the authors is the possibilibytion is methodological and lies in providing a generic frame-
of obtaining shape models with surface folding due to sonwork for automatic selection of corresponding landmarks in 3-D
landmark groups (triples) matched in different order betweehapes. The second contribution is of a more practical value and
training examples. This is a consequence of the use of s in applying this technique to the construction of 3-D shape
ICP technique, which is a purely local registration techniquaodels from 3-D cardiac magnetic resonance imaging (MRI) as
and does not incorporate any connectivity constraints. In thell as in addressing a number of application-specific issues.
work by Brett and Taylor [6], this problem is addressed by Model-based analysis of cardiac images is an active area of
transforming the surface to a planar domain using harmonisearch—see e.g., a recent literature survey on 3-D model-
maps where connectivity constraints can be explicitly enforcdshsed techniques for functional analysis of cardiac images [14].
This technique avoids invalid cross-correspondences butMedel-based approaches have been used for several applica-
only applicable to single-part shapes that are topologicalipns ranging from computation of global cardiac functional
isomorphic to a disk. The work by Fleute and Lavallée [7], [8parameters, mainly ejection fraction and left ventricular mass
is also closely related to our work. They use a multiresolutiqa5]—[21], to local estimation of cardiac motion [22]-[26] and
nonrigid registration technique based on octree-splines. Thisess [27]-[31]. Some authors have applied cardiac models to
approach is a surface-based technique that registers shapesalgliac scan planning [32] or to derive new descriptors of car-
minimization of a distance measure. In contrast to their worljac function [26], [33]-[39]. A common denominator of these
we use a free-form volumetric nonrigid registration techniquaethods is that shape description is performed using standard
based on maximization of two novel similarity measuresnpodeling primitives such as, for instance, superquadrics [15],
coinedlabel consistencgndx statistic In addition, we provide [26], [39], [40], series expansions [17], [40], [41], constructive
experiments that give empirical evidence of the convergensalid geometry [32], or polyhedral representations [21], [23],
of the atlas generation procedure, which is missing in [7], [8]35], [42], [43]. Shape constraints are either explicitly enforced
Finally, Subsokt al.[9] reported on a method for automaticallyby the selected primitive (e.g., superquadrics) oraddocreg-
constructing 3-D morphometric anatomical atlantes that igarization terms in the shape recovery process.
based on the extraction of line and point features and theirln this paper, the use of 3-D statistical shape models to de-
subsequent nonrigid registration. This method is very attractigeribe the shape of the left and right ventricle of the heart is pro-
for applications where line features are evenly spread over thesed. Although shape representation is based on standard trian-
whole object, as is the case in the skull for which the authogsilated meshes, the model contains information of the average
illustrated their method. However, these features can be insldeation of each node in the mesh, its variability, and the cor-
ficient in modeling the heart since the cardiac chambers ardation between node locations inferred from a set of training
rather smooth. Moreover, the extraction of line features is nsthapes. This information can be used to regularize the problem
trivial and may hamper the use of this technique in large-scalé model recovery or image segmentation without the need of
databases due to lack of robustness. anyad hocsmoothing constraints. However, this paper focuses
Recently, Daviegt al.[11] published a method to automati-on the automatic construction of statistical shape models and
cally extract a set of optimal landmarks using the minimum deloes not address the problem of shape recovery or segmenta-
scription length (MDL) principle. Although this is a promisingtion, which is one of our future research issues.
method that has a sound mathematical formulation, it is still re- This paper is organized as follows. Section Il provides a sum-
quired to elucidate whether the optimal landmarks in the MDinarized background on statistical shape models. Section IlI fo-
sense are also optimal in the sense of anatomical correspeuses on a multiresolution free-form registration algorithm that
dence. On the other hand, although the authors sketch howniti be used in the landmarking procedure. In Section IV, our
extend this method to 3-D, the extension does not seem triviptoposed method for automatic landmarking is described. In
Experiments with 3-D shapes still need to be performed to sh&ection V, the method is applied to construct statistical models
its usefulness and computational feasibility, in particular witbf the left and right ventricle of the heart from 3-D MRI; em-
multiple-part objects. pirical evidence is given on convergence properties and recon-
In this paper, a technique is introduced that tries to addrestsuction errors. Finally, Section VI closes the paper with some
the shortcomings of point- or surface-based registration wherenclusions and directions for future research.
no overall connectivity constraints are imposed. Our method in-
troduces global constraints by matching shapes via a volumetric
nonrigid registration technique using multiresolution B-spline
deformation fields [12], [13]. Owing to the multiresolution na- Let {x;;7 = 1---n} denoten shapes. Each shape consists
ture of the deformation field, the mappings between matchefl m 3-D landmarks{p; = (p1;,p2;,p3j);7 = 1---m},
shapes have been shown to be smooth [13]. Although in our éixat represent the nodes of a surface triangulation. Ob-
perience this is not essential, an additional smoothness pentdining those m 3-D landmarks is a nontrivial task
can be incorporated, which further prevents folding when rand presents the main topic of this paper. Each vector
covering the deformation field. An important feature of our ape; is of dimension 3. and consists of the landmarks
proach is that the same method for establishing correspondenggs, pa1, ps1, P12, P22, DP32s- -+ DPlmsP2m,P3m). MOreover,
can be simultaneously applied to all the parts of a composite @ssume that the positions of the landmarks of all shapes are
ject. This has not been previously investigated in [5]—[8]. expressed in the same coordinate system. These vectors form

Il. STATISTICAL SHAPE MODELS
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a distribution in a @:-dimensional space. The goal is tdained in a coarse-to-fine manriEf!, whereH is the number of
approximate this distribution with a linear model of the form mesh subdivisions that take place in the multiresolution strategy

x=x+®b (1) T(2,y,2) = Ty(z,y,2) + T (2,9, 2). (2)

wherex = (1/n)> ", x; is the average landmark vector,

b is the shape parameter vector of the model, &nds a B. Global Transformation

matrix whose columns are obtained by performing a prin- The global transformation describes the pose and size of the
cipal component analysis (PCA) of the covariance matritansformed shape with respect to the atlas. This can be accom-
S = (1/(n—1)) Y, (xi — %)(x; — %)T. The principal plished with a global transformation in the form of a quasi-affine
components oS are calculated as its eigenvectefs with model

corresponding eigenvalugs (sorted so thah; > \;41). If &

contains the < min{m,n} eigenvectors corresponding to the b1 012 013 v 014

largest nonzero eigenvalues, we can approximate any shape oft @ (,y,2) = | a1 b2 b2 y |+ | O ©)
the training sek using (1), wherep = (¢1|p2| - - - |¢:) andb O O30 O3 z 034

is at-dimensional vector given by = ®* (x — ). where the coefficients® parameterize the 12 degrees of

The vectorb defines the shape parameters of the ASM. Biteedom of a generic affine transformation. In a quasi-affine
varying these parameters, we can generate different instanceg g{sformation only nine parameters are independent: transla-
the shape class under analysis using (1). Assuming that the clggg {ts,t,.t.}, rotation {r,,r,,r.}, and anisotropic scaling
of landmark vectors follows a multidimensional Gaussian di%sw. s,,5.}. The computation of these parameters is accom-
tribution, the variance of thah parameteb; across the training plished with a modified version of the method by Studholme
setis given by\;. By applying limits to the variation o;, for gt 5] [45]. The main modification is that we do not use a reg-
instancelb;| < +3/X;, it can be ensured that a generated shapgration measure based on mutual information but eithisel
is similar to those contained in the training class. consistencyor the  statistic similarity measure, as described

Although in this paper the statistical analysis is carried o{f section I11-D. However, we employ the same multiresolution
using PCA, there are other alternatives that may be considergx,‘jategy for computing the registration parameters.

such as independent component analysis [44].

C. Local Transformation

lll. MULTIRESOLUTION NONRIGID REGISTRATION To accommaodate for detailed shape differences, the global de-

In this section, a multiresolution free-form nonrigid registraformation field has to be supplemented with a local deformation
tion algorithm is presented. This technique is employed in thisodel. The local deformation field is represented by a free-form
papertofind correspondencesbetween shapes. Incontrastto rde&irmation (FFD) based on B-splines. The basic concept of
registration literature, our aim here isto match labeled rather thBRDs is to deform an object by embedding it into a volumetric
gray-level images, i.e., image segmentations where each vaxelsh of control points and subsequently manipulating the nodes
value indicates the type of structure this voxel belongs to. of the mesh. The mesh is deformed in a multiresolution fashion

The matching algorithm summarized here is a multiresolby subsequently subdividing the mesh (i.e., decreasing the mesh
tion free-form nonrigid registration algorithm, which was forspacing). At any mesh resolution level, the control points are
mulated by Rueckent al.[12] and further developed by Schn-smoothly interpolated by a set of B-spline basis functions that
abelet al.[13]. This algorithm manipulates a shape by embedlefine a continuous deformation field.
ding it into a subsequently refined volumetric mesh, which de- At each level of mesh resolutidn the FFD is represented by
fines a continuous deformation field through a set of B-splire tensor-product B-spline. Assume that we denote the domain
basis functions. For each location in the reference shape, tighe image volume a8 = {(z,y,2)|0 < 2 < X,0 <y <
corresponding locations in the individual shapes are found¥00 < 2 < Z}. Let " denote an,, x n, x n, mesh of
obtain an optimal match. The corresponding optimal deformeentrol points¢§fj,k at levelh and with uniform spacing, =
tion field is obtained by maximizing a voxel similarity measure,, /2", whereé, is the initial mesh spacing. Then, the FFD at
on the basis of the corresponding labels. This maximizationlés/el , can be written as the 3-D tensor product of the familiar
carried out using a standard gradient ascent algorithm. The rege-dimensional cubic B-splines
istration method and two novel similarity measures for labeled s s s
images are briefly summarized in the following paragraphs. Th(z,y, 2) = Z Z Z Bz(U)Bm(v)Bn(w)¢§Zrl7j+m7k+n
A. Transformation Model [=0 m=0n=0 )

LetT : (z,y,2) — (a,y, ') be atransformation that mapswhere: = |z/n,| — 1,5 = |y/ny| — 1, k = |2/n.] — 1,
any point ¢, vy, z) in the source image into the corresponding = =/n, — [z/n.|,v = y/n, — |y/ny |, w = z/n.— |z/n],
target image coordinates’( sy, z’). The target image could beand whereB; represents thé&h basis function of the B-spline
an atlas or average shape defining the coordinate system [#6].
which all other images will be expressed. The control pointsp” act as parameters of the B-spline, and
To accommodate for nonrigid deformatiorB,will consist the degree of nonrigid deformation that can be modeled depends
of a global transformatiof’, and a nonrigid transformation ob-on the resolution levek. The smaller the associated spacing
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65, the more local the deformation is allowed to be. On the IV. AUTOMATIC LANDMARKING
other hand, the computational complexity of the algorithm i .

approximately inversely proportional to the spacing parametg‘. Overview

The tradeoff between deformation flexibility and computational Ideally, alandmark is an anatomically characteristic point that
complexity is mainly an empirical choice, which is determinedan be uniquely identified on a set of shapes. However, anatom-
by the accuracy required to deform the atlas into the individuighl landmarks are usually too sparse to accurately describe a 3-D
shapes. In our experiment with cardiac data sets, we have uskdpe. Therefore, we will consider pseudo-landmauksland-

a deformation field with three mesh subdivisiods & 3) and markslying onthe shape’s surface and determining its geometry.

an initial spacing, = 20 mm. Assume thak segmented shapes of the structure of interest
are available. These segmentations constitute the training set
D. Similarity Measure for Labeled Image Registration S, = {L;}, wherei = 1---n. Each shape in the training set is

. . represented by abeled imagevhose voxel values belong to a
Since the correspondences of structures across both images
o . . el setC. To generate the landmarks for theshapes, a shape
are encoded explicitly in the labeling, we are only intereste

atlasA is constructed and landmarked; these landmarks are fi-

in maximizing the overlap of structures denoted by the salp]%"y propagated back to theshapes (Fig. 1). The following

label in both images. Therefore, we have used two registration ~. ) . .
. . . sections describe these three steps in detail.
measures that favor the mapping of identical labels. We have
coined these measurkbel consistencand« statistic
1) Label ConsistencyAssume thatP45(4,7) is the joint
probability of labelsi and j in the source (A) and target (B) The automatic landmarking algorithm can be applied to a
shapes, respectively. This can be estimated as the numbegefof previously segmented structures. In our application, three
voxels with label inimageA and labe}j inimageB divided by  main structures of the heart have been segmented from a number
the total number of voxels in the overlap region of both imagest volunteer scans. Each segmentation consists of manual iden-
The label consistency measure is then defined as tification of the background (BG), the left ventricular blood pool
(LVp) and myocardium (LV.y.), and right ventricular blood
! . pool (RV,,) (see Fig. 2). In the segmentation of the left ven-
Crc(A, B) = ZPAB(W)- ®) tricle, the papillary muscles are considered part of the blood
i=1 pool, as is customary in functional cardiac analysis. Each seg-
Héentation is represented as a labeled image, where each voxel
' pbeled according to the tissue type to which it belongys=(

B. Preprocessing

Label consistency is a measure of how many labels of all t
labels in the source shape are correctly mapped into the tar'%
shape. When the label consistency measure is zero, none o & I_‘pr7 LV inyo, RVip }). _ i ) .
source labels has been correctly mapped into the target shape. ff*Vind to the large voxel anisotropy in MR short-axis acquisi-

all reference labels are correctly matched, the label consistefi@?s ©f functional cardiac data sets, manual segmentations have
measure yields one. significant staircase artefacts in the direction of the long axis

2) Ther Statistic: The measure is inspired in a statistic useaf the heart. To facilitate image registration and to smooth out

frequentlyinbiomedicalresearchtoassessthe agreementbetv&ggﬁe artefac_ts, shape-l:_)ased inter_polation [48], [491 has b_een ap-
two raters measuring the same quantity or performing aclassifi€i€d to obtain labeled images of isotropic voxel size (Fig. 3).

tion task [47]. For a given voxel, each image can be considered'&Preserve the diameter of the ventricles in the basal segmen-

an observer who assigns a class label to it. Therefore, comparftPn slices, this slice was copied (repeated) again toward the

labeled images s equivalent to comparing the agreement betwB8r€ Prior to computing the distance transform required to per-
two observers. This statistic is defined as follows: form shape-based interpolation. Once the distance transform is

linearly interpolated, it is thresholded to obtain a binary volume
and subsequently masked to remove the extra slice. In this way,
the segmentations before and after interpolation have the same
1 basal diameter. In our opinion, this is a conservative way of re-
Pe = Z P4(i)Pp(1) (7) specting the ventricular dimensions in the absence of label in-
i=1 formation beyond the most basal slices.

K :pa — Pe (6)
1 — Pe

l
Pa = Z Pap(i,1) (8) c. Atlas Construction
=1

Given a set of labeled images that are instances of an anatom-
whereP4 (3, j), Pa(i), andPg(7) are the joint probability den- ical structure, a shape atlas can be viewed as an average labeled
sity and marginal probability densities for the labels in the immage representation ofthe shape under consideration. Inthe next
agesA andB. Thek statistic is a measure of agreement betweeection, amethod to obtain an atlas for bivalued labeled imagesis
two classification,, that is corrected for chance agreement introduced, which will be subsequently extended to labeled im-
To interpret the values of thestatistic, one can refer to standardiges containing multiple, and possibly nested, structures.
tables provided in the literature [47]. This statistic has a max- 1) Atlas Construction in Single Object Shapdset us as-
imum value of one, and values above 0.9 are usually regardaane that a set of training shapess, is available and that
as very good agreements. each shape is represented by a bivalued labeled irBagehat
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Fig. 1. Overview of the automatic landmarking framework. All individual data sets are matched to an atlas via a quasi-affine transfatp)atiahg nonrigid
transformationT.). The landmarks in the atlas can then be copied to the individual patients. The nonrigid deformation is subsequently reversed. Thus, PCA is
carried out in a space where all shapes are aligned with the atlasafiimal coordinate systenaxplained in Section IV-C3). The principal modes of variation will
therefore account for nonrigid deformations and not for pose or size differences.

Let B. and DT (B.) denote the shape in atlas-aligned
coordinates and its signed Euclidean distance trans-
form [50], respectively. The signed distance transform
of an average shap#,, can be obtained by computing
DT (Ba) = (1/n)> 1, DT(B!). The average shape can
be retrieved by thresholding the distance transform map to its
zero-level set. We coin this averaging procedsinape-based
blending

As was mentioned earlier, prior to shape-based blending,
all shapes have to be aligned into an atlas-aligned coordinate
system. As the atlas is still to be constructed, the initial coor-
dinate system can be chosen arbitrarily to coincide with that
of any of the shapes in the training sgt. To reduce the bias
introduced by the selection of the initial reference shape, an
iterative algorithm has been developed. In the first iteration,
one shape of the training set is randomly selected to be the
atlas. Subsequently, all other shapes in the set are registered
to the current atlas using the global registration technique
presented in Section 1lI-B and the label-based similarity
measures introduced in Section IlI-D. After registration, all
shapes are blended and a new atlas is generated. This new atlas
then becomes the current atlas, and the process is iterated until
the difference between the current and new atlas falls below
Fig. 2. Example MR image and manual segmentation from the training sgtcertain threshold. This can be monitored, for instance, by

(short-axis and simulated long-axis view). The labeled images in (b) Weﬁe)(;fining a suitable measure of label agreement between two

manually extracted from 3-D cardiac MR scans in (a) and subsequent - .
interpolated using shape-based methods. In each slice, the LV blood pool (d&ages. In the results section, the convergence properties of
gray), LV myocardium (light grey), and RV blood pool (white) were manuallthis algorithm and the influence of the randomly selected initial

outlined. The papillary muscles were included in the segmentation of the blolo erence are investigated

pool, as is customary in clinical practice. The labeled image shown in (b) h = .

been resampled using shape-based interpolation. 2) Atlas Construction in Multiple-Part Shapes:et us as-
sume that a set of training shapes,, is available and that each

is, the label set contains only two labels corresponding to the aiftape is represented by a labeled imagein which! objects

ject and background segmentations. For the sake of simplicitye represented by distinctive labels.

we assume that), is the set of shapeS, after they have been The atlas construction algorithm as described above applies

aligned to a reference coordinate system. to bivalued labeled images for which the distance transform is

(b)
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and RV,,. By construction, LV, |JLV ..y, always embeds
LVyp, and both of them are nonoverlapping structures with
respect to RY,,. Each one of these subshapes can now be rep-
resented as a separate bivalued labeled image. This transforms
the problem of shape-based blending of a multivalued labeled
image intol! problems of shape-based blending of bivalued
labeled images. After thé average subshapes have been
generated, all of them are combined into a new labeled image
by taking the initial arrangement and labeling into account. An
example of shape-based blending with two shapes consisting
of three objects is shown in Fig. 5.

3) Natural Coordinate SystemThe atlas construction phase
is iterative in order to reduce the bias toward the initial shape
used as the initial “atlas.” However, the pose and size of the atlas
are still biased toward those of this initial shape. This fact can
have a negative influence on the landmark propagation, as we
will explain in the following. An atlas whose pose is biased to-
ward a specific subject may lead to a privileged situation of that
subject in the nonrigid warping phase. To remove any remaining
bias, we use a method similar to that presented in Rueekert
al. [51] to define anatural coordinate systefior statistical de-
formation models.

Suppose that we havedeformation fieldsI';. They map the
atlas constructed with the iterative algorithm of Section IV-C2
into each individual inS,,. These deformation fields can be re-
covered with the nonrigid registration algorithm described in
Section Il

We define now a natural coordinate system, which will be the
coordinate system requiring the least residual nonrigid deforma-
tion to explain the anatomical variability across all individuals.
Based on a point in the space of the reference subject, we can
find the corresponding poist’ in its natural coordinates by ap-
plying the average deformatidh to x

A

x' =x+ T(x). 9)

An interpretation of this natural coordinate system is shown
in Fig. 6. Applying the average deformation veciby, a point
X 4 in the coordinate system of subjet¢tshould map the point
x 4 into the point’ in natural coordinates. Applying the average
deformation vectoT 5 to the corresponding poirts in the co-

©
Fig. 3. Owing to voxel anisotropy, the labeled images were resampled ¢gdinate system of subjeét should also map it to the point

create isotropic geometric models. (a) shows an original labeled image with tural dinat Th . fect iaid
large anisotropy in the axial direction. (b) shows the corresponding shape-balédlatural coordinates. Thus, assuming a perfect nonrgid reg-
interpolated image. (c) overlays the two previous images for comparison.  istration that establishes a one-to-one correspondence between

the anatomies of different subjects, the choice of the reference
&Hbject becomes irrelevant when constructing a natural coordi-

defined. However, itis possible to generalize the method to mul- . . . X
. T : . nate system, since point$ are independent of the choice of the
tiple-part shapes, which is needed for cardiac modeling. In fac .

reference subject.

to extend the method of the previous section, we only need t0, . . .
specify a method for shape-based blending of multivalued im_In conclusion, before proceeding with the actual autoland-
apes The atlas ali nmenri rocedure usedgin this paper reamﬁ/rking, the atlas is warped into its natural coordinate system,
egteﬁds from sin Ieg-ob'ect th)) multiole-obiect Iabelegirza s |V ere there is no influence of the initial shape. This unbiased

: gie-ov) P ) 9€s. Mas is the one used as a template to extract landmarks and sub-
the following, we discuss our method for shape-based blendlng : X
. ) : sequently propagate them according to Fig. 1.
in cardiac labeled images.

Fig. 4 schematically represents a typical arrangement of i
LVip, LVmyo, and RY,, as extracted manually from cardiad” -@ndmark Extraction
MR images. This figure also indicates how the cardiac shapeAfter an atlas has been constructed and mapped into natural
can be decomposed into three subshapes, W, | JLV .y,  COordinates, it needs to be landmarked. In this paper, we shall
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Fig. 4. Two-chamber model decomposition. To apply shape-based blending, the heart is decomposed into three bivalued labeled images reprekdnting, f
to right, the right ventricular blood pool (RY), the left ventricular interior (L, | LV myo), and the left ventricular blood pool (L), respectively.

(d)

Fig. 5. Shape-based blending of label images. (d) illustrates the blending result of the two shapes of (a) and (b). (c) shows the two blended éhfages mixe
comparison. All figures contain short-axis and simulated long-axis views.

(b)

Fig. 6. Natural coordinate system. In this space, the coordinates of the atlas are not biased toward the initial shape under the assumptiomohagierfect
registration.
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(@) (b)

Fig. 7. Atlas construction and landmarking. (a) shows the result of the iterative atlas construction algorithm as three orthogonal viewsizés aisual
surface rendering of the atlas with the wire frame joining the extracted landmarks. The landmarks have been extracted using marching cubegieith subse
mesh decimation (95% decimation factor). The examples shown were generated usingtatistic measure, although similar results were obtained for the
label-consistency registration measure.

consider surface landmarks only. For cardiac modeling, land-Once the full transformatioi’ has been found, the landmarks
marks for the endocardial and epicardial wall of the left ventriclef the atlas can be propagated to the natural coordinate system
and for the endocardial wall of the right ventricle can be ey applying the inverse of the nonrigid transformatiary ¢).
tracted. To landmark the atlas automatically,iieeching cubes This process is repeated for each sample shape. As a result, a
[52] algorithm is applied. This algorithm generates a dense tdet of landmarks is obtained that describes shape variations with
angulation of the boundary isosurfaces that can be further deespect to the atlas. Since these landmarks are now in natural co-
imated to reduce the amount of triangle nodes. The decimatiorinates, pose and size variations are explicitly eliminated from
process can be implemented in such a way that it preservesfiimther analysis. These transformed landmarks are subsequently
accuracy of the surface representation in the original triangulzsed as the input for PCA, as indicated in Fig. 1.

tion to a desired tolerance. We use the method by Schradder Fig. 1 suggests that each sample shape is warped to the atlas.
al. [53], which takes into account the curvature of the surface bo this case, the inverse of the deformation field has to be com-
keep the density of the triangles higher around relevant edgesjputed to propagate the landmarks. However, this mapping does
decreases the number of triangles in flat areas. The nodes inribenecessarily exist. This was illustrated for the sake of con-
decimated triangulation form the landmarks of the shape. In azgptual simplicity only. From a computational point of view, it
implementation of Schroeder’s algorithm, we specify a target more convenient to warp the atlas to each sample shape and
decimation rate (95%) subject to the constraint that the errorude the direct deformation field for landmark propagation.

the decimated mesh is kept to a given tolerance with respect to

the original mesh. The tolerance we used was the in-plane res- V. RESULTS

olution of our images (1.2 mm).

By using marching cubes, a dense and approximately evén
distribution of landmarks is obtained. Alternatively, any other Fourteen adult subjects, free of clinical cardiovascular dis-
automatic algorithm for mesh extraction from a binary (labele@nse, were scanned on a 1.5-T MR scanner (Philips ACS-NT,
image can be applied,such sirface net§54] or thewrapper PowerTrak 6000 Gradient System, Philips Medical Systems,
algorithm[55]. Note that, as an alternative to these algorithmBest, The Netherlands) using an ECG-triggered Echo Planar
an expert could manually localize anatomical landmarks in th@aging (FFE-EPI) sequence. Cine acquisitions consisting of
atlas. Anatomical landmarks, however, may be too sparse to refght to ten short-axis slices of the heart in 18-20 phases of
resent the shape of 3-D structures and may also be difficultttee cardiac cycle were performed. Scan parameters were repeti-

Data Sets and Preprocessing

accurately localize. tion time: TR= 632857 ms; echo time: TE 8.9-9.1 ms; flip
angle:a = 20° ; slice thickness: 10 mm; a 256256 image
E. Landmark Propagation matrix; and a 306 300-mm? field-of-view.

Once the atlas is constructed, mapped to the natural coor!:rom the acquired temporal sequence of each volunteer, the

dinate system, and landmarked, its landmarks can be pro gitﬂﬁslt\?lg f;i?:ewl?:n?ag“ﬂg rsnegr?t]aet?;ﬁg,v?:r;nr?g::sdlég
gated to the individual shapes. This is carried out by warpi ' q Y g b

each sample labeled volume into the atlas with a transformati nISOtrOpIC voxels with size equal to the in-plane resolution (1.2

T = T, 4 T, that is composed of a quasi-affin® () and a gg{igzlr:\g/_;hape—based interpolation [48], [49], as described in
nonrigid (T.) transformation. The transformatidh, accounts '

for global (pose and size) differences between the atlas and each _

sample volume, while the transformati@h accounts for local B. Atlas Construction

shape differences. The recoveringbfis carried out using the  Fig. 7 shows the result of the atlas building process described
algorithms described in Section . in Section IV-C. The shape-based blending procedure captures
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Fig. 8. Convergence of the atlas construction algorithistatistic and théabel consistencgimilarity measures between two consecutive atlases as a function of
the iteration numbe. In the inset of each plot, the similarity measure is indicated. The graph denoted )dthresponds to the evolution of thabel consistency
measure, while the graph with) corresponds to the evolution of thestatistic. Each curve is the average of the convergence curve resulting from initializing the
atlas building procedure with one of the 14 shapes.

the global shape of the ventricles without an apparent bias in theAnother way of assessing the influence of the initial shape
wall thickness at any particular sector. is to create atlantes with all possible initial shapes, map all of
The convergence of the iterative atlas construction and the #fem into natural coordinates, and compute the corresponding
fect of different initial shapes in the generation of the atlas haghape-based average atlas. Subsequently, the mean, standard de-
also been studied. Fig. 8 plots tkestatistic between two suc- viation, and maximum distance between the boundaries of each
cessive iterations of the algorithm of Section IV-C. The saralas and those of the average atlas can be computed and aver-
curves were generated for the 14 atlantes obtained by usaged (Fig. 9). Table | shows the average mean, standard devia-
each of the 14 subjects as initial shapes. For each atlas and hiath, and maximum error for each part of the model. The average
registration measures used in the atlas building procedure, maximum error is always below 4 mm and, therefore, is on the
show the evolution of both metrics as a function of the iteerder of the voxel dimensions (1:21.2 x 10 mmn?).
ation number. After two iterations, the agreement is excellent
(x > 0.94) and the label consistency very high (1€0.99). It C. Statistical Shape Models
is notable that both metrics seem to have a different sensitivityTo construct a statistical model from the cardiac atlas,
to matching, as their dynamic range is different. The plots alfandmarks were extracted automatically from the atlas using
indicate that the convergence is not monotonous but tendsmarching cubes and subsequent mesh decimation (95% deci-
level out after a few iterations. This could be caused by margimahtion ratio). This procedure yielded 1352 (Kappa) and 1304
changes in the registration measure due to small mismatchefL&) landmarks for the left ventricular epicardial surface, 679
boundaries when working with labeled images. In fact, there(€appa) and 631 (LC) landmarks for the endocardial surface,
hardly any visual difference between atlantes in successive itend 1841 (Kappa) and 1693 (LC) landmarks for the right
ations after the third iteration. Given that this process is reasomntricular endocardial surface.
ably fast and to avoid any residual bias, we used the atlas of th& his table reports on the errors of a left ventricle model
fifth iteration in this study. and a combined left and right ventricle model, respectively.
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TABLE |
AVERAGE MEAN, STANDARD DEVIATION, AND MAXIMUM DISTANCES
BETWEEN THE ATLANTES CREATED STARTING WITH ALL POSSIBLE
INITIAL SHAPES AND THE AVERAGE ATLAS OF ALL ATLANTES IN
NATURAL COORDINATES

Model Measure LV endocardium LV epicardium RV endocardium
Mean SD Max Mean SD Max Mean SD  Max
[mm] (mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]
Left Ventricle Kappa 0.21 0.84 289 0.21 0.832 250

Left Ventricle LC 0.17 0.87 2.75 0.20 0.83 241 - - -
Two-chamber Kappa 0.15 0.89 269 0.16 0.84 241 0.29 0.94 3.60
Two-chamber LC 0.24 0.89 293 0.21 0.84 252 0.34 093 3.08

markable that there is hardly any difference in the modes. This
seems to support the idea of a high independency of the model
construction procedure with respect to the matching metric.

Fig. 12 indicates the percentage of the total explained vari-
ance as a function of the number of modes. Once corresponding
landmarks are available, one is free to include or exclude the
landmarks corresponding to a certain substructure. The more
substructures that are incorporated, the larger the required
number of modes to explain a given variance since the overall
shape variability has been increased.

To quantitatively assess the performance of the constructed
models, we have analyzed the reconstruction error by performing
several leave-one-out experiments. The landmarks of all but one
data set were used to build a statistical model. This model was
subsequently used to reconstruct the set of landmarks not in-
cluded inthe PCA. The same experiment was repeated by taking
out from the PCA, one in turn, each of the sets of landmarks.
Finally, the average reconstruction error over the leave-one-out
experiments was computed. Fig. 13 shows the mean square
reconstruction error as a function of the number of modes used
in shape reconstruction. Since our training set is relatively small
and the shape variability is quite large, these experiments do
not reveal much information on the generalization ability of the
models. However, they provide a first estimate that could be
refined by enlarging the database of shapes.

D. Automatic Landmark Propagation Performance

To quantify the ability of the technique to map corresponding
landmarks, we have selected a set of seven landmarks in each
subject and in the atlas built thereof. They are indicated in
Fig. 14(a). Three observers were asked to identify these points
twice for each subject in two independent sessions. The same
point set was pinpointed twice in the atlas. Subsequently, the set
of landmarks in the atlas was mapped into each subject using

(b) the deformation fields that were computed in Section IV-E, and
Fig. 9. Contours in three planes of the atlantes created starting with a@ilnumber of performance measures were computed [Fig. 14(b)].
possiple initial shap_es afte( map_ping into natural coordinates _ove_rlaid on Y%= have calculated the intraocbserver variability of the 3-D
atlas image. There is very little difference between shapes, as indicated by the ... . -
close agreement between contours. position of the landmarks placed manually in subject space.
Also, we computed the intraobserver variability, measured in
In the former, only the left ventricle segments ¢V and subject space, corresponding to the landmarks of the atlas after
LV myo) Were taken into account in the nonrigid registratiopropagation through the deformation field. For each landmark,
and landmark propagation procedures. In the latter, both tiwe calculated the average intraobserver variability over all
left ventricle (LVy,, and LVy,y0) and the right ventricle (Ry,) subjects. Table Il reports the mean intraobserver variability of
were nonrigidly registered to the atlas, and the landmarks wéhe three observers. The variability in the automatic landmarks
subsequently propagated. indicates how the uncertainty in manual placement in the

Figs. 10 and 11 show the first five modes of variation of thatlas—of a similar magnitude to that of manual placement in
two-chamber model constructed using the kappa statistic asubject space—propagates through the deformation fields as an
label consistency as registration measures, respectively. It isuaeertainty in the location of automatic landmarks.
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Fig.10. Shape instances generated using the 3-D two-chamber model arefdtistic registration measure from 14 cardiac data sets. The instances are generated
by varying a single shape parameter, fixing all others at zero standard deviations from the mean shape. This two-chamber model consists of GitéliaV endoc
nodes, 1352 LV epicardial nodes, and 1841 RV endocardial nodes.

Ist mode

3rd mode

Table Il reports on the interobserver variability for manuaknce in subject space between the gold-standard landmarks in
landmarking in subject space and that of the landmarks marsutbject space and in atlas space after being mapped into subject
ally placed in the atlas and then propagated into subject spam@ordinates. From these experiments, it is possible to state that
The latter variability measures the effective uncertainty in thte error in the automatic landmark placement is, on average,
position of the automatic landmarks when considering that theéy?2.2 mm. This is about two pixels with the current in-place
have been obtained from the propagation of already uncertaimge resolution and only moderately worse than the interob-
(manual) landmarks. server variability in manual landmarking.

Finally, it is interesting to compute an estimate of the average
distance (error) between the landmarks placed manually in sub-
ject space and those propagated to subject space from the atlas.
To this end, the average position of the landmarks of all ob- This paper has presented a method for the automatic construc-
servers and all sessions has been used as the “gold standaedi’of 3-D statistical shape models. The technique is based on
[textured bullet in Fig. 14(b)]. Table IV gives the average dighe automatic extraction of a dense mesh of landmarks in an

VI. DISCUSSION ANDCONCLUSION
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2nd mode '
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Sth mode '

— 3 mean +3v/A

Fig. 11. Shape instances generated using the 3-D two-chamber model and the label-consistency registration measure from 14 cardiac datagefhef the he
instances are generated by varying a single shape parameter, fixing all others at zero standard deviations from the mean shape. This two-dltamfistsmode
of 631 LV endocardial nodes, 1304 LV epicardial nodes, and 1693 RV endocardial nodes.

atlas constructed from a set of training shapes. These landmarksmilar algorithm was used for building the average model
are subsequently warped by a nonrigid deformation field to eadtlas). However, the atlas construction was performed on a sur-
shape in the training set. The method is able to treat single- dade representation of the shapes and required a high-resolution
multiple-part shapes. reference shape to initialize the iterative procedure. Finally, no
The first part of the proposed technique involves the buildirexperimental evidence was reported with respect to the conver-
of an atlas from a set of example shapes. In Section V, we hagence of the atlas construction algorithm nor to the selection of
presented experimental results supporting the hypothesis ttet initial shape (uniqueness).
this procedure is convergent. Moreover, different initial shapesAn alternative to our iterative method of atlas construction is
seem to bias only marginally the final atlas when it is mappebe tree-based approach presented by Brett and Taylor [5]. This
into natural coordinates. Therefore, for practical purposes, thigrarchical strategy is attractive since it gives a unique (noniter-
procedure of atlas construction can be considered to yielcaéve) way to build an atlas from a given set of examples. How-
unique solution. In the work by Fleute and Lavallée [7], [8]ever, one problem of Brett's method is that the training shapes
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100 | ' ' ' ' ' | have to be ranked according to a pairwise match quality. This
requires that all possible pairs have to be matched and scored
- 90 before the tree is built. Brett presented results with only eight
ﬁ:/ 80 - 1 shapes [5], but ordering the examples according to the matching
g quality would be cumbersome for a more realistic amount of
S 0r 1 training shapes. For a total numbermoghapes, it is necessary
2 5o to computeN = (n — 1) ~ O(n?) pairwise matches to build
§ the average shape. Our approach obtains the average shape in
E S0 1 N = nl ~ O(n) matches, wheré is the total number of it-
° ol Two-chamber model (Kappa) | erations required for convergence. Section V provides experi-
Two-chamber model (LC) mental evidence that after about five iterations, the atlas shape
30 b f Left ventricle model (Kappa) - -
Left ventricle model (LC) stabilizes.
20 ; ; . . ; Our method for building the mean shape model is based on
0 2 4 6 8 10 12 14 averaging shapes in the domain of their distance transforms. A
Modes (#) similar strategy was proposed by Leventtdral. [56] to incor-

. . po[jate statistical constraints into the level-set approach to image
Fig. 12. Percentage of total shape variance versus the number of modes use . . . . .
in the 3-D ASM. The total number of landmarks was 3872 (kappa) and 362§gmentation. HoweV_era in that work, PCA is applied on t_he dis-
(LC) landmarks for the two-chamber heart model and 2550 (kappa) and 23&nce transform domain and not on a surface representation. As a

(LC) landmarks for the left ventricular model, respectively. Note that as tkqonsequence the number of degrees of freedom is considerably
two-chamber and LV models were constructed (landmarked) independen '

marching cubes does not yield exactly the same number of nodes for a gil%mer than in our method. There is an intrinsic limitation in both

substructure (e.g., LV epicardial surface) in both models. our method and that of Leventenal. Averaging distance trans-
forms of several shapes does not necessarily yield a valid mean
6 : : : : shape representation. It is easy to show, for instance, that in the
case of a large misalignment between the averaged shapes, this

Left ventricle model (Kappa) ——— . . .
Left ventricle model (LC) =% procedure can introduce topological changes. Although we did

not observe this problem in our experiments, this can be a po-
tential source of failure of the technique when building models
g4 1 of very complex structures.
The proposed technique could be used with any nonrigid reg-
1 istration algorithm. In this sense, the method is a generic frame-
N work open to future investigation. Currently, a multiresolution
version of the FFD nonrigid registration of Ruecketral.[12] is

l | used to match labeled images. Two novel registration measures
’ suitable for labeled images were used. The atlantes and models
1r 1 built with both measures were hardly distinguishable from each
' ' other, yielding, on average, a similar performance in terms of
landmark propagation accuracy. We believe that both metrics
are equally useful for automatic landmarking, although label

@ consistency is a computationally slightly more efficient mea-
6 ' ' ' ' sure.
Two-chamber model (Kappa) —+— The use of nonrigid registration as a method to establish shape

Two-chamber model (LC) +---x---- N .
correspondences imposes a constraint on the type of shapes that

can be handled. It is assumed that the class of shapes has a
well-defined topology. If there are substructures in one image
not represented in the other image to be matched, the transfor-
{ { mation would have to “destroy” those parts. This situation could

——
——

1 arise when building a model of normal and abnormal medical
structures where some parts in the latter are missing because
l l 1 of adiseased state or surgical procedure. However, establishing
correspondences in these mixed models also remains an ill-de-
fined problem with any of the previously published approaches
[51-9]-
0 > 4 5 s 10 12 14 Results of the construction of a one- and two-chamber
Mode (#) cardiac model have been presented. Experiments were carried
(b) out to establish the ability of the models to generalize to shapes
_ _ _ , not present in the training set. The average reconstruction error
Fig. 13. Reconstruction error in the leave-one-out experiments for the left
ventricle and two-chamber models and different registration measures use&ﬂ%he two-chamber model was below 3.8 mm when the number
model building. of nodes was sufficient to explain 90% of the shape variability.
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Posterior

Anterior

Manual Landmarks Propagated Manual Landmarks

(b)

Fig. 14. Autolandmarking performance evaluation. (a) Seven landmarks were identified at the basal and apex level: LV apex epicardial (Lmk #x1), LV ape
endocardial (Lmk # 2), RV apex epicardial (Lmk # 3), LV basal endocardial centroid (Lmk # 4), anterior basal septum (Lmk # 5), posterior basal R\/rskptum

# 6), middle basal RV-septum (Lmk # 7). (b) Definition of the computed performance measures for one of the landmarks: landmarks madedtihgtbriginal

manual landmarks of a subject (left) or the manual atlas landmarks propagated to subject space (right); the points markee tvétraverage location of two
sessions for a given observer (one to three). Finally, the textured bullet is the average landmark location over all three obserit$T Menedo1nteT are

the intra- and interobserver variability for observerespectively, and is the error between the centroids of the manual and propagated Iandmark clouds.

TABLE I 3-D extension of the recent method by Davégsl. [11] has a
INTRAOBSERVER VARIABILITY DUE TO MANUAL AND similar problem, as it relies on a surface parameterization only
AUTOMATIC LANDMARKING . . .
applicable to shapes isomorphic to a sphere.
Lok # Manual [mm] Automatic & [mm] T Automatic LT [mm] Our model can be classified as a statistical surface model. One

intra intra intra intra intra intra intra
e gy o, Oy ay [ inera 171, T,

0.755  0.758 0330 | 0.692 0308 1528 | 0.124 0.144 1872 of the main differences between our approach and the work by

0.560 0.371 0.371 | 0.466 0.561 1.560 | 0.773 0.639 1.254 A i

0559 0.588  0.433 | 1.039 04374 1,;60 0.834 1.193 2.027 Brett and Taylor [5_]’ [6] and FIEUt_e a”fj Lava”e_e [7], [8] is that

0.297 0.399 0.347 | 0.868 0430 0.834 | 0.884 0976 0.850 we use a volumetric nonrigid registration algorithm as opposed

0.418 0.377 0.356 | 1.532 0.826 1.523 | 1.798 0.641 2.178 .

0.403 0335 0356 | 1.490 2397 1947 | 1.244 1385 2.125 to their surface-based approaches. As a consequence, after non-

0.804 0.411 0.356 | 1.499 0.485 1.931 1.539 0.854 2.170 A i i H H

Average | 055604530364 T 108107601585 10305351758 rigid registration, we are able to recover a dense volumetric dis-
placement field. This could be used to propagate landmarks lo-

cated inside the myocardium or blood pools producing a statis-

OO W N

TABLE 11l . . : X ) .
INTEROBSERVERVARIABILITY DUE To MANUAL AND tical so_hd mgdel. To ach|e_ve this g(_)al, most likely gray—lgvel in-
AUTOMATIC LANDMARKING formation will have to be included in the atlas construction and
P M o] Koo | e I ] Ie}ndmark propagatlon prog:edures.. This mformapon could pro-
gimer  glmer  giater | gluter  giuter | pinter | plaer  plater inter vide the required textural information to match internal struc-
1 1.414 0.681 0.663 0262 0.367 1.761 | 0.183 0.760 2.448 tures
2 0.755 0.548 0.616 | 0.478 0.235 1.019 | 0.372 0.408 1.872 N . )
3 | 103l 1503 LI27 | 3440 0713 1530 | 1.589 0.702 3.091 This paper has shown that the combination of our atlas gener-
4 0.484 0.623 0.319 | 0.668 0.853 0.713 | 0.858 0.373 0.594 . . . . . .
5 0.888 0.530 0.319 | 2.300 1.340 0.739 | 2543 0.797 2.066 ation method and the multiresolution FFD nonrigid registration
6 0.395 0.518 0.319 | 1.413 1.655 1.117 | 1.086 1.191 1.967 H i H H H
2 | 7301 0696 0319 | 1351 0793 1074 | 2180 0465 1989 glgorlthm is able to cope with th'e large deformations |nvc_)Ived
Average | 0.908 0.741 _ 0.526 | 1.416_ 0.848 1.136 | 1.260 0.671 _ 2.003 in intersubject matching of cardiac shapes. We had previously
experimented with a single-level version of the FFD registra-
TABLE IV tion technique. Although with that approach we were able to
AVERAGE DISTANCE BETWEEN MANUAL AND AUTOMATIC LANDMARKS propagate the landmarks of anatomical structures with moderate
Lok # | o [mm] ic [mm) shape varla_b|I|ty (deep structure_s of the br_am.and bone strup-
i 713 3819 tures) [57], it was unsuccessful in the application presented in
2 2.038 2.373 this paper. To cope with large shape variations, a multiresolu-
Z g-g;g (1)23113 tion extension [13] of the free-form registration algorithm pro-
5 2.780 2 668 pose_d_by Rueckesdt gl. [_12] was apphed_. In thls_approach, the
6 3.333 1.713 nonrigid transformation is recovered by increasing the mesh res-
. 7 ;ﬁg 3(1)33 olution by subsequent subdivision. Gross shape warping takes
verage | = ' place at the coarsest resolution, while shape details are captured

at the finest resolution.

In our experiments, we have not observed any problems ofWith this technique, we have been able to automatically place
wrong correspondences leading to flipping of triangles @rsetof specific landmarks with an average accuracy of about 2.2
surface folding. This is an important improvement comparedm and a precision of about 1.5 mm. In the same experiments,
to the method of Brett and Taylor [5]. Also, our method is lesthe precision intrinsic to manual landmarking was of about 0.8

restrictive in terms of the shapes that can be modeled. Thigmsn. These figures are quite encouraging and indicate that au-
an important advantage over the extended method of Brett andhatic landmarking is feasible. To the best of our knowledge,

Taylor [6], which is based on harmonic maps and therefotiis is the first study where the errors in automatic landmark

limited to shapes that are isomorphic to a disc. The proposgildcement are quantitatively assessed.
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Our future work will focus on applying our method to model- [3]
based cardiac image segmentation and analysis. First, we are in-
terested in enlarging the database of training shapes to capturg
the main modes of shape variation of cardiac chambers for a
large population and not only for those of our reduced training 5]
set. Although this paper provides a proof-of-concept for our au-
tomatic landmarking algorithm, it is necessary to improve the
statistics of the model to achieve an accurate segmentation. Fdf!
this purpose, we have recently completed a study in which a
previous version of this algorithm was applied to images of 100(7]
subjects of the Framingham heart staayf,which the 14 shapes
of this manuscript are a subset. This study will be published else-
where.

All the shapes in our training set were acquired at end dias-
tole. However, the fact that the nonrigid registration algorithm
can cope with large intersubject variability suggests that the
same experiments could be repeated for different phases of thié!
cardiac cycle to build a statistical spatio temporal model of the
heart. This is a line of future investigation.

Finally, a strategy has to be devised to adapt the model mesHI
to segment cardiac MR images. This could be achieved, for in-
stance, by applying a method similar to the 2-D deformatiorni1]
procedure of active shape models [1]. For each landmark in
the model, a statistical model of the intensity profile (or some
other suitable image feature) along the surface normal can he2]
computed. The model mesh could be deformed by moving the
nodes along the direction of the normals to the position best
matching the intensity with the statistical profile model. This[13]
method would provide an image-derived displacement for each
node. The displacements applied to update the mesh can be ob-
tained by projecting the suggested displacements onto the sub-
space spanned by the main modes of variation. This projection
step would naturally incorporate shape constraints in the defor-
mation of the mesh. [14]

In conclusion, a method was presented to construct a shape
atlas and to derive a statistical model of 3-D shape variability;; s
We have demonstrated that this method is applicable to the con-
struction of a statistical shape model of the cardiac Chambelrjsl.G]
To the best of our knowledge, this work is the first that uses 3-
statistical shape models to describe the left and right ventricle
of the heart. Our future work will concentrate on the application(17]
of this model to cardiac image segmentation and analysis.

(8]
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