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Abstract. A novel method is introduced that allows for the generation
of landmarks for three-dimensional shapes and the construction of the
corresponding 3D Active Shape Models (ASM). Landmarking of a set
of examples from a class of shapes is achieved by (i) construction of an
atlas of the class, (ii) automatic extraction of the landmarks from the
atlas, and (iii) subsequent propagation of these landmarks to each ex-
ample shape via a volumetric elastic deformation procedure. This paper
describes in detail the method to generate the atlas, and the landmark
extraction and propagation procedures. This technique presents some ad-
vantages over previously published methods: it can treat multiple-part
structures, and it requires less restrictive assumptions on the structure’s
topology. The applicability of the developed technique is demonstrated
with two examples: CT bone data and MR brain data.

1 Introduction

Statistical models of shape variability [5] or Active Shape Models (ASM) have
been successfully applied to perform segmentation and recognition tasks in two-
dimensional images. In building those statistical models, a set of segmentations
of the shape of interest is required as well as a set of landmarks that can be
defined in each sample shape.

Manual segmentation and determining point correspondences are time con-
suming and tedious tasks. This is particularly true for three-dimensional applica-
tions where the number of slices to analyze and the amount of landmarks required
to describe the shape increases dramatically with respect to two-dimensional ap-
plications. This work aims at automating the landmarking procedure while we
still rely on the existence of a manual segmentation of the shapes.

Several authors have proposed techniques to find point (landmark) correspon-
dences but only a few of them have indicate or investigated their applicability in
the field of statistical shape models. Wang et al. [16] use a surface registration
technique to find 3D point correspondences based on a metric matching surface-
to-surface distance, and surface normals and curvature. The authors suggest that
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this technique could be used to build 3D ASMs but they do not report any re-
sults on statistical model building. Kelemen et al. [9] report on the construction
of 3D ASMs of neuroradiological anatomical structures. In this method the au-
thors used a correspondence-by-parameterization approach to establish surface
landmarks. The landmark correspondence is defined in the parameter domain
of an underlying spherical harmonic parameterization. Although this approach
has been used to build 3D ASMs, no explicit volumetric or surface registration
between shapes takes place.

To our knowledge, little work has been done on the automatic construction of
3D ASM using elastic registration [7, 8,4, 3]. The frameworks proposed by Brett
and Taylor [4, 3] are most closely related to this paper. In these approaches, each
shape is first converted into a polyhedral representation. In the first approach [4],
shape pairs are matched using a symmetric version of the Iterative Closest Point
(ICP) algorithm of Besl and McKay [2]. Using this method, the authors were
able to build 3D ASMs by automatically finding corresponding landmarks be-
tween surfaces. Surfaces are represented by means of dense triangulations that
are matched via sparse triangulations (obtained by triangle decimation from the
dense triangulations). The nodes of this sparse triangulation become the final
landmarks. One problem acknowledged by the authors is the possibility of ob-
taining shape models with surface folding due to some landmark groups (triples)
matched in different order between training examples. This is a consequence of
the use of the ICP technique which does not incorporate connectivity constraints
(purely local registration). In Brett and Taylor [3] this problem is overcome by
transforming the surface to a planar domain by means of harmonic maps where
connectivity constraints can be explicitly enforced. This technique avoids invalid
cross-correspondences but is only applicable to single-part shapes that are topo-
logically isomorphic to a disk. The work by Fleute and Lavallée [7,8] is also
closely related to our work. They use a multi-resolution elastic registration tech-
nique based on octree-splines. This approach is a surface-based technique that
registers shapes by minimization of a distance measure. In contrast to this, in
this work we use a free-form elastic registration technique based on maximiza-
tion of normalized mutual information (volume-based technique). In addition,
we provide experiments giving empirical evidence of the convergence of the atlas
generation procedure that is not analyzed in [7, 8].

In this work a technique is introduced that addresses the shortcomings of
point-based registration where no overall connectivity constraints are imposed.
It uses a free-form elastic registration technique based on maximization of nor-
malized mutual information (volume-based technique). Our method introduces
global constraints by modifying the pairwise shape corresponder from a point-
based registration technique into a volume-based elastic registration technique.
By construction, the deformation field is enforced to be smooth and the regu-
larization term of the deformation will further penalize folding. In addition, our
method can be applied to multiple-part shapes.

The paper is organized as follows. In Section 2, our approach is described.
In Section 3, results are presented that show the applicability of the method
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to modeling the radius in volumetric Computed Tomography (CT) data and
the caudate nucleus in Magnetic Resonance Imaging (MRI); empirical evidence
is given on convergence properties and reconstruction errors. Finally, Section 4
closes the paper with some conclusions and directions for future research.

2 Method

2.1 Background

Suppose that we have n shapes described as vectors, {x;;¢ = 1---n}. Each
shape consists of ! 3-D landmarks, {p; = (p1j,p2j,P3;);j = 1---1} that repre-
sent the nodes of a surface triangulation. How to obtain those [ 3-D landmarks
is not a trivial issue and is precisely the topic of this paper. Each vector is
of dimension 3/ and is made up of the concatenation of the landmarks, i.e.
X; = (P11, P21,P31, P12, P22, P32, " -, P11, P21, P31)- Moreover, it is assumed that the
positions of the landmarks of all shapes are in the same coordinate system. These
vectors form a distribution in a 3l-dimensional space. The goal is to approximate
this distribution with a linear model of the form

x =%+ ®b (1)

where X = % >, x; is the average landmark vector, b is the shape param-
eter vector of the model, and ® is a matrix whose columns are the principal
components of the covariance matrix S = -1 3" | (x; —%)(x; —%)”. The prin-
cipal components of S are calculated as its eigenvectors, ¢;, with corresponding
eigenvalues, \; (sorted so that A; > A;y1). If @ contains the ¢ eigenvectors corre-
sponding to the largest eigenvalues, then we can approximate any shape of the
training set, x, using Eqn. (1) where @ = (¢1|¢2| - -|¢¢) and b is a t dimensional
vector given by b = T (x — %).

The vector b defines the shape parameters of the ASM. By varying these
parameters we can generate different instances of the shape class under analysis
using Eqn. (1). Under the assumption that the cloud of landmark vectors follows
a multi-dimensional Gaussian distribution, the variance of the i-th parameter,
b;, across the training set is given by ;. By applying limits to the variation of
b;, for instance |b;| < £3+/);, it can be ensured that a generated shape is similar
to the shapes contained in the training class.

2.2 Overview

Ideally, a landmark is an anatomically characteristic point that can be uniquely
identified on a set of shapes. However, anatomical landmarks are usually too
sparse to accurately describe a 3D shape. Therefore, we will consider pseudo-
landmarks, i.e. landmarks lying on the shape’s surface and determining its ge-
ometry.

In our framework, automatic landmarking is carried out by mapping the
landmarks of an atlas that is representative of a set of training shapes. Let us
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assume that n segmented shapes (3D binary images) are available, 7,, = {B;}
where i = 1---n. To generate the landmarks for the n shapes, the task is to build
an atlas A, landmark it, and propagate its landmarks to the n shapes (Fig. 1).
In the following we will describe these three steps in detail.

Patient Atlas-aligned Atlas Atlas Atlas-aligned
Coordinates Coordinates Coordinates Coordinates Coordinates
-1
Ta Te Copy Te
1 69 @ @ Landmarks
‘ ‘ 1 PCA

= T A Te S Pl -
@ Landmark

Atlas

Fig. 1. Overview of the automatic landmarking framework. All individual data sets
are matched to an atlas via an quasi-affine transformation (T,) and an elastic transfor-
mation (7.). The landmarks in the atlas can then be copied to the individual patients.
The elastic deformation is subsequently reversed. Thus, Principal Component Analysis
(PCA) is carried out in a space where all shapes are aligned with the atlas (atlas-
aligned coordinates). The principal modes of variation will therefore account for elastic
deformations and not for pose or size changes.

Atlas building. In the context of this paper, an atlas is an average representa-
tion of the shape of a structure inferred from a set of training shapes 7,,. In order
to build the atlas, three issues have to be addressed: the selection of a pairwise
corresponder to match two different shapes, a strategy to blend shapes that are
represented as binary volumes in a common coordinate frame, and a scheme
to obtain an average or mean shape with marginal bias towards a particular
individual.

Pairwise shape corresponder. Given a shape B;, it is matched to the atlas,
A, using an quasi-affine registration algorithm with nine degrees of freedom
(rigid transformation plus anisotropic scaling) adapted from [14]. This algo-
rithm matches shapes using a criterion based on normalized mutual informa-
tion [15]. Since the shapes are binary images, we have experimented with several
other registration measures (sum of squared differences and cross-correlation)
but normalized mutual information was found to be superior.
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After registration, the shape B; is expressed in the coordinate system of A.
The coordinate system of A will be referred to as the atlas-aligned coordinate
system.

Shape blending. Once we have found the quasi-affine transformations that map
each of the B; shapes into atlas-aligned coordinates, these shapes have to be
combined to form an average shape (binary image).

Let B} and DT (B}) denote the shape in atlas coordinates and its Euclidean
distance transform [6] respectively, with the convention that inner points have
a negative distance while outer points have a positive distance. Then, an aver-
age shape can be obtained in the distance transformed domain by computing
DT (Baw) = = >y DT(B)). A binary representation of the shape B,, can be
obtained by thresholding the distance transform map to its zero-level set (Fig-
ure 2(a)).

Mean shape. To generate the mean shape it is necessary to register all 7,, shapes
into a common reference frame (atlas-aligned coordinates). However, the atlas is
not initially known. To solve this problem an iterative algorithm was developed.
One training shape is randomly selected as the initial atlas, Ag, and all remaining
shapes are registered to it using the pairwise shape corresponder. After this step,
all shapes 7, are expressed in the canonical system of Ay and can be blended
to generate a new atlas A;. This procedure is iterated I times to reduce the
effect of the initial shape. Any metric of similarity between the atlases of two
consecutive iterations can be used to monitor the convergence of the procedure.
The final atlas is A;. This iterative algorithm is summarized in the flow diagram
of Figure 2(b). To check for the influence of the randomly selected training shape,
atlases with different start shapes have been quantitatively compared.

Atlas landmarking. By means of the iterative procedure of the previous sub-
section a binary atlas, A, has been obtained. In order to landmark this atlas the
marching cubes [11] algorithm is used which generates a dense triangulation of
the boundary surface. This triangulation can be decimated to obtain a sparse set
of nodes that keeps the geometry of the original triangulation to a desired degree
of accuracy. The number of nodes in this decimated triangulation corresponds
to the number of landmarks. The use of different triangle densities (decimation
ratios) has been investigated to observe their influence in the statistical models
generated with our technique (see results section). The decimation strategy ap-
plied in this paper is the one proposed by Schroeder et al. [13]. Note that, as
an alternative to marching cubes, an expert could manually pinpoint anatomi-
cal landmarks in the atlas. Anatomical landmarks, however, may be too sparse
to accurately represent the shape of the structure. By using marching cubes, a
dense and approximately even distribution of landmarks is obtained.

Landmark propagation. Once the atlas is constructed and landmarked, its
landmarks can be propagated to the individual shapes. This is carried out
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Fig. 2. (a) Shape-based blending of n registered binary shapes based on distance trans-
forms (DT). By convention, the inside of the shape has negative distance and the out-
side positive distance. (b) Flow diagram of the iterative atlas construction algorithm.

by warping each sample binary volume into the atlas with a transformation,
T =T, + T, that is composed of an quasi-affine (T},) and an elastic (T¢) trans-
formation. The transformation T, accounts for pose and size differences between
the atlas and each sample volume while the transformation T, accounts for shape
differences.

The global transformation is obtained using an quasi-affine registration algo-
rithm adapted from [14]. Registration of binary volumes was carried out using
normalized mutual information [15]. The elastic transformation is expressed as a
volumetric free-form deformation field computed with the method of Rueckert et
al. [12] that also uses normalized mutual information as a registration measure.

Once the global transformation T has been found, the landmarks of the
atlas could be propagated to the atlas-aligned coordinate system by applying
the inverse of the elastic transformation (7,7!). This process is repeated for
each sample shape. As a result, a set of landmarks is obtained that describes
shape variations with respect to the atlas. Since these landmarks are now in
atlas-aligned coordinates, pose and size variations are explicitly eliminated from
further analysis. These transformed landmarks are subsequently used as input
for Principal Component Analysis (PCA) as indicated in Figure 1.

Figure 1 suggests that each sample shape is warped to the atlas. In this case,
the inverse of the deformation field has to be computed to propagate the land-
marks. However, this mapping does not necessarily exist. This was illustrated
for the sake of conceptual simplicity only. From a computational point of view
it is more convenient to warp the atlas to each sample shape and use the direct
deformation field for landmark propagation.
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3 Results

3.1 Data sets

In order to exemplify the methodology, two case studies were analyzed. The first
case study consists of a set of 14 manual segmentations of the head of the radius,
a bone of the wrist, extracted from CT scans (voxel dimensions 1 x 1 x 2 mm?).
The second is a set of 20 manual segmentations of the caudate nucleus, a deep
structure of the brain, from MR scans (voxel dimensions 1 x 1 x 1.2 mm?).

In building the model of the caudate nucleus each hemisphere of the struc-
ture was treated independently. This was done because this particular two-part
structure has an almost specular symmetry with respect to the sagittal plane
separating the left and right brain hemispheres. Such symmetry would be diffi-
cult to capture with a single quasi-affine transformation. After the landmarks of
each side (sub-atlas) are extracted and propagated, Principal Component Anal-
ysis (PCA) is applied to the concatenation of the landmarks of both sides. In
this way, inter-hemisphere relationships are included in the statistical analysis.

3.2 Atlas construction

Convergence properties. As a metric to measure convergence we have used
the k statistic [1]. This statistic measures the similarity between two binary
images, kK(Am, Am_1), in a way that is independent of the structure’s volume.
Figure 3 shows the evolution of the & statistic, x(m), as a function of the iteration
number, m. This statistic ranges between 0.0 and 1.0 and a value above 0.9 is
usually regarded as an excellent agreement [1]. The k(m) statistic compares the
similarity between the atlases A,, and A,,_;. Figure 3(a) corresponds to the
atlas of the radius. Two curves are shown for two different initial shapes used in
the initialization procedure. Similar curves are drawn in Figure 3(b) for the left
and right caudate nucleus atlases. The atlas of each subpart (left/right caudate
nucleus) was obtained independently. The trend of these plots is similar to that
observed in the atlas of the radius. Figure 3 indicates that after five iterations
the shape of the atlas stabilizes (x > 0.97).

Effect of initial shape. We investigated whether the atlases generated with
the two different initializations are comparable in shape, i.e. similar up to an
quasi-affine registration. This was done in the following way. For each individual
shape, two quasi-affine transformations can be found that map it to each of the
two atlases, A and B. Let us call these transformations T4, and T'g,, respectively.
Let Ty be the quasi-affine transformation that maps the atlas A into the atlas
B. In this situation, the transformation 7; = T];ilTA BT 4; should be equal to the
identity transformation, T7. It is possible now to measure the average and the
standard deviation of the difference T; — T;. These two measures will provide
the bias and dispersion introduced by using two different initial shapes to build
the atlas. The results of this analysis are shown in Table 1 for each atlas and
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Fig. 3. Convergence of the atlas construction algorithm. The & statistic between two
consecutive atlases as a function of the iteration number. Iteration zero corresponds
to the reference (initial) shape used in the iterative algorithm. The x(m) statistic
compares the agreement between the atlases A,, and A,,—1. Curves for different initial
shapes (A and B) are shown.

each transformation parameter. This table indicates that the deviation from an
identity transformation depends on the type of shape. For the very elongated
and thin structure of the caudate nucleus the error standard deviations (SDs)
are larger compared to the radius. As a consequence, the influence of the initial
shape on the final atlas will depend on the shape itself. Translation and rotation
error SDs are below 3.3 mm and 0.1°, respectively. Scaling error SDs are below
14.5%. From a practical point of view Table 1 indicates that the atlas does
indeed depend on the initial shape and that the effect is has to do with the
class of shapes being modeled. In the applications presented in this chapter, this
effect is not critical. After performing an quasi-affine registration of the atlases
generated with two different initializations, the average boundary-to-boundary
distance between the two atlases was 1.3 mm and 0.6 mm for the radius and the

Table 1. Mean (standard deviation) of the error in each transformation parameter
(translation, rotation and scaling) of the transformation 7T; with respect to the identity
transformation for three different atlases.

Parameter Units  Radius Caudate (L) Caudate (R)

ts [mm] -0.72 (1.68) +1.25 (3.28) +0.62 (1.42)
t, [mm] -1.20 (1.32) -0.20 (0.71) -0.14 (0.57)
t [mm] +0.64 (1.99) -0.25 (0.54) +0.06 (0.17)
Ta [°]  40.01 (0.02) -0.01 (0.03) +0.02 (0.03)
Ty [°]  -0.01 (0.02) -0.04 (0.09) +0.10 (0.05)
r. [°]  -0.01 (0.02) -+0.01 (0.08) -0.02 (0.06)
Sz [%] -0.57 (1.99) +3.45 (14.51) -5.60 (8.20)
Sy [%] -1.48 (1.78) -2.12 (6.28) -1.47 (3.92)

s [%] +1.57 (6.08) -3.22 (7.23) -1.98 (4.12)
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Fig. 4. Shape instances generated using the 3D model from 14 data sets of the radius.
The instances are generated by varying a single shape parameter, fixing all others
constant at zero standard deviations from the mean shape. Each instance of the model
consists of 2500 nodes.

two caudate nucleus atlases, respectively. These errors are on the order of, and
slightly smaller than the voxel dimensions, respectively.

3.3 Point distribution models

Figures 4 and 5 show the mean shape models and the first three modes of
variation obtained from PCA for the radius and caudate nucleus test cases,
respectively. The number of mesh nodes is 2500 and 1000, respectively. In both
cases there are no visible surface foldings neither in the mean shape nor in the
models for £3/X;.

3.4 Reconstruction error

Figure 6 illustrates the relative shape variance explained with an increasing
number of modes. Similar curves for different decimation ratios (number of model
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Fig. 5. Shape instances generated using the 3D model from 20 data sets of the caudate
nucleus. The instances are generated by varying a single shape parameter, fixing all
others constant at zero standard deviations from the mean shape. Each instance of the
model consists of 1000 nodes.

triangles) are provided. These curves are only marginally dependent on this
factor. From ten modes onwards, the model captures more than 90% of the
shape variance. Note the steeper slope of the curves corresponding to the caudate
nucleus. Over the training set there is apparently less variability in the shape
of the caudate nucleus than in the shape of the radius. As a consequence, with
fewer modes a larger amount of shape variation can be explained.

In order to assess the ability of these models to recover shapes not used in
the training set we carried out the following experiment. Reconstruction errors
were computed by reconstructing the landmarks of one shape of the training
set with the ASM built from the remaining shapes (leave-one-out experiment).
The errors reported in Figure 7 are the average of the reconstruction errors over
all shapes taking out one in turn. The same experiment was repeated for differ-
ent decimation ratios and increasing number of modes of shape variation taken



Automatic construction of 3D ASM 11

Cumulative relative variance (radius) Cumulative relative variance (nucleus caudate)
100 — 100 M___..—-f
" P / w P M
55
60 0.2! 60
B ',r"’ o2 8 /
P 0.9

40 0.9 40
20 20

0 0

0 2 4 6 8 10 12 14 0 5 10 15 20
Modes Modes
(a) (b)

Fig. 6. Percentage of total shape variance versus the number of modes used in the 3D
ASM and for various decimation ratios. The number of landmarks before decimation
was 15519 for the radius, and 2320 for the caudate nucleus. The decimation ratio
represents the ratio between the nodes eliminated from the triangulation of the atlas
and its initial number. Note that the number of modes is at most the number of sample
shapes minus one.

into the reconstruction. The reconstruction errors were computed in millimeters.
For the caudate nucleus, the reconstruction error is below the voxel dimensions
(10 modes). In the case of the radius, the reconstruction error is slightly larger
than the slice thickness. One possible explanation to this higher error could be
the fact that no image resampling was used during registration. On the other
hand, in comparison to the shape of the caudate nucleus, the radius represents
a more complex structure with larger shape variability in the training set. This
could explain the poorer reconstruction performance in the leave-one-out exper-
iments of the radius. The plots of Figure 7 also indicate that the reconstruction
error is slightly dependent on the decimation ratio and, as expected, inversely
proportional to the number of modes of variation.

4 Discussion and conclusion

This paper presents a method for the automatic construction of 3D active shape
models. The technique is based on the automatic extraction of a dense mesh of
landmarks in an atlas constructed from the training shapes which are propagated
through an elastic deformation field to each shape of the training set. The method
is able to treat single and multiple-part shapes.

The first part of the proposed technique involves the building of an atlas from
a set of example shapes. In Section 3 we showed experimental results indicating
that this procedure is convergent. Moreover, different initial shapes seem to
contribute only marginally to the final atlas. That is, the final atlases are similar
up to an quasi-affine transformation. However, we note that the influence of
the initial shape depends on the class of shapes being modeled and has to be
assessed on a case-by-case basis. In the work by Fleute and Lavallée [7, 8] a similar
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Fig. 7. Reconstruction error in the leave-one-out experiments. The number of land-
marks before decimation was 15519 for the radius, and 2320 for the caudate nucleus.
The decimation ratio represents the ratio between the nodes eliminated from the tri-
angulation of the atlas and its initial number.

algorithm was used to build the average model (atlas). However, no experimental
evidence was reported with respect to the convergence of the atlas construction
algorithm.

An alternative to our iterative method of atlas construction is the tree-based
approach presented by Brett and Taylor [4]. This hierarchical strategy is attrac-
tive since it gives a unique (non-iterative) way to build an atlas from a given
set of examples. However, one problem of Brett’s method is that the training
shapes have to be ranked according to a pairwise match quality. This requires
that all possible pairs have to be matched and scored before the tree is built.
Brett presented results with only eight shapes [4] but ordering the examples
according to the matching quality would be cumbersome for a realistic amount
of training shapes. For a total number of n shapes it is necessary to compute
N = (n—1)? = O(n?) pairwise matches to build the average shape. Our ap-
proach obtains the average shape in N = nl ~ O(n) matches where I is the
total number of iterations required for convergence. Section 3 shows experimental
evidence that after about five iterations the atlas shape stabilizes.

Our method for building the mean shape model is based on averaging shapes
in the domain of their distance transforms. A similar strategy was proposed
by Leventon et al. [10] to incorporate statistical constraints into the level-set
approach to image segmentation. However, in that work, PCA is applied on
the distance transform domain and not on a surface representation. As a con-
sequence, the number of degrees of freedom is considerably larger than in our
method. There is an intrinsic limitation in both our method and that of Leven-
ton et al. Averaging distance transforms of several shapes does not necessarily
yield a valid mean shape representation. It is easy to show, for instance, that
in case of a large misalignment between the averaged shapes, this procedure
can introduce topological changes. Although we did not observe this problem in
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our experiments this can be a potential source of failure of the technique when
building models of complex structures.

The proposed technique could be used with any elastic registration algo-
rithm. In this sense, the method is a generic framework open to future research.
Currently, the volumetric elastic registration of Rueckert et al. [12] is used to
match binary images. The use of elastic registration as a method to establish
shape correspondences imposes a constraint on the type of shapes that can be
handled. It is assumed that the class of shapes has a well-defined topology. If
there are sub-structures in one image not represented in the other image to be
matched, the transformation would have to destroy those parts. This situation
could arise when building a model of normal and abnormal medical structures
where some parts in the latter are missing because of a diseased state or surgery.
However, establishing correspondences in these mixed models also remains an
ill-defined problem with any of the previously published approaches [7,8, 3].

Results of the construction of models of two anatomical structures have been
presented. Experiments were carried out to establish the ability of the models
to generalize to shapes not present in the training set. The average reconstruc-
tion error was below 2.65 mm (radius) and 0.95 mm (caudate nucleus) when
the number of nodes used was sufficient to explain 90% of the shape variability.
These errors are on the order of, and slightly smaller than the voxel dimen-
sions, respectively. In our experiments we have not observed problems of wrong
correspondences leading to flipping of triangles and surface folding. This is an
important improvement compared to the initial method of Brett and Taylor [4].
Also, our method is less restrictive in terms of the shapes that can be modeled.
This is an important feature with respect to the improved method of Brett and
Taylor [3] that is based on harmonic maps and therefore limited to shapes that
are isomorphic to a disc.

Finally, it would be interesting to perform a comparison between the models
built with different methods. In order to carry out a quantitative comparison it is
necessary to define a measure of model quality. The definition of such a measure
is in itself an interesting issue. Obviously, different methods will yield different
sets of landmarks which precludes a landmark-based comparison. If one defines
a given segmentation task, a comparison could be established on the basis of the
segmentation accuracy. Although these measures can have a prominent practical
value to determine the best model-building technique for a given problem, the
conclusions will remain task-dependent. Possibly, other more task-independent
criteria related to the compactness and generalizability of the built models could
be within the interesting candidate measures to explore.
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