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Abstract
Our aim is to extend the matrix approach of the power flow equation to study the effects of
different devices over light propagation in step index plastic optical fibers (SI-POFs). Here we
devise an experimental method to characterize a particular scrambler as a matrix which can be
directly introduced into the model framework to predict transmission properties. Thus, fiber
bandwidth versus length was simulated for different scrambler configurations and then
compared with experimental data to verify the characterization method. A study of the
scrambler effects for different launching conditions reveals important aspects of its impact on
transmission.

Keywords: step index plastic optical fiber, propagation model, transmission properties,
scrambler

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Transmission properties in POFs show a complex dependence
on fiber length whose origin is generally attributed to strong
mode coupling and cannot be explained with simple models.
Due to the high multi-modality of POFs, the propagation
angle can be treated as a continuous variable and optical
power propagation through the fiber can be described by a
differential power flow equation as proposed by Gloge [1].
Thus, there are different approaches to POF modeling based
on Gloge’s equation which can be used to describe optical
power propagation including modal coupling [2, 3]. In fact,
our method is based on this approach, introducing diffusion
and attenuation as general functions of the angle [4]. These
characteristic functions, that account for the particular fiber
modal behavior, were estimated from experimental far-field
patterns (FFPs) [4]. However, as the temporal dependence
was not explicit in our equation, the frequency response and
bandwidth could not be calculated. Thus, we recently proposed
a fast and robust method to solve the power flow equation
generalized to incorporate the temporal dimension [5–7]. This

method provides the evolution of the spacetime optical power
distribution with length from which angular power distribution,
attenuation, bandwidth and pulse spreading can be derived.
We showed that model simulations reproduce experimental
measurements, such as FFPs and frequency responses [4, 7],
but can also be applied to obtain predictions of fiber properties
where it is difficult or impractical to measure them. In
addition, we postulated that this method offers a flexible tool
to study the impact of localized disturbances over transmission
properties. In fact, our aim here is to show how a device
or defect, providing that it is characterized by a matrix, can
be straightforwardly introduced into the model framework to
obtain a description of its effects over power propagation
and derive the changes imposed on spatial distribution or
bandwidth.

In particular, the chosen device to test our hypothesis is
a corrugated scrambler that we have used before to obtain
experimental frequency responses of POFs from different
manufacturers [8, 9]. These measurements will be used to test
the behavior of the combined model. Thus, we first present a
procedure devised to obtain the characteristic matrix for this
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Figure 1. Corrugated scrambler designed for 1 mm POFs.

scrambler. Our method is based on comparing radial profiles
extracted from output FFPs measured without the scrambler
and with the scrambler near the fiber output end in order to
separate its effects from those of power propagation. Then,
we explain how the scrambler matrix can be easily introduced
into the propagation matrix model to obtain a joint model
for the scrambler–fiber system. In section 3, we evaluate the
capability of this scrambler–fiber matrix model to reproduce
experimental measurements of frequency bandwidth and to
obtain useful predictions for practical links. In section 5, we
give a summary of our conclusions that reveal the potential of
the matrix approach of the power flow equation to study the
effects of devices such as scramblers, tappers, etc, over light
propagation in plastic optical fibers.

2. Characterization of the scrambler

In this section, we describe our method to obtain a matrix that
characterizes the scrambler effects over optical power and that
can be easily introduced into the propagation matrix model
framework. The scrambler used in our measurements, shown
in figure 1, is 5.5 cm long, has seven corrugations with a
6 mm pitch and a corrugation depth of 0.5 mm where the
fiber has to be inserted [8]. To characterize the scrambler,
experimental radial profiles were extracted from the FFPs for
short fiber segments launching a collimated beam and scanning
the input angle in the horizontal plane. The angular scan of
radial profiles is obtained first without the scrambler and then
with the scrambler near the fiber output end. In this way, the
propagation effects are negligible and all the changes in the
profiles are produced by the scrambler. The measurements
with the scrambler were always taken following carefully the
same procedure to insert the fiber to ensure that its behavior
was reproducible. We have tested poly methyl methacrylate
(PMMA) optical fibers of similar properties (1 mm diameter
and high NA) from three different manufacturers: ESKA-
PREMIER GH4001 (GH) from Mitsubishi, PGU-FB1000
(PGU) from Toray and HFBR-RUS100 (HFB) from Avago.

The radial profiles have been obtained from FFPs recorded
for each input angle by a cooled camera following a method
described in previous works [4], except for the injection
module. This module consists of an He–Ne laser beam of
635 nm directly injected into the fiber input end, which is
placed on the center of a motorized rotary mount in order
to vary the launching angle. The FFP images, obtained
for input angles varied from −40◦ to 40◦ in 1◦ steps, were
automatically registered and stored. The whole angular scan
was obtained first for fiber segments of 1.25 m without the

scrambler and then the same fiber segment was tested but
with the scrambler inserted 10 cm from its output end. All
experimental conditions (laser injection, starting angle, fiber
position, etc) remained the same for both scans. Radial profile
scans for the three fibers are shown in figure 2 as images.

We have used this image representation to display the
profiles at all different injection angles in a single plot. In
these images, each column represents the radial profile for
the corresponding input angle as a function of the output
angle on the vertical axis. The mirror images of the profiles,
corresponding to negative output angles, are also shown for
the sake of symmetry. The profiles for negative injection
angles have also been measured and are not exactly the same as
those obtained for the positive angles, revealing the deviations
from the ideally symmetric response. The left images show
radial profiles measured without a scrambler, while the middle
ones show radial profiles when the scrambler was placed close
to the output end. The right images show radial profiles
calculated using the scrambler matrix as will be described later.
To enhance the visibility of the lower power values obtained
for the scrambler at high input angles, all images have been
submitted to a logarithmic transform. Higher values are shown
in deep red and lower values in dark blue. The scales are the
same for all images, so those measurements obtained with the
scrambler are dimmer, indicating power loss.

The images show how, when using the scrambler, the
power is spread over a wide range of output angles and thus
the narrow peaks clearly visible in the images obtained without
the scrambler nearly disappear in the middle and rightmost
ones. Thus, the wide power spread caused by the scrambler
is equivalent to a strong mode coupling that is achieved in
a very short distance. The scrambler induces power transfer
not only between adjacent modes or angles, but also to others
further away. We assumed the scrambler can be modeled as a
linear angle-variant system, which means that the output power
for a given input angle can be written as a linear combination
of the power at that and other angles, variant with the input
angle. Therefore, the scrambler effects can be modeled as a
multiplicative matrix, S. Thus, given the input power profile as
a column vector, pi, where each vector element is the power at
a given angle, the output power vector, po, can be obtained by
the matrix product of pi, by the scrambler characteristic matrix,
given as po = S · pi. The images presented above can also be
seen as matrices where each column is a power vector whose
horizontal index represents the input angle. Thus, the effects of
the scrambler over the whole dataset can be directly calculated
as the matrix product:

Po = S · Pi, (1)

where Po and Pi are matrices built as column power vector
aggregates.

In the matrix S, each column indicates the spread of the
power in a given input angle due to the scrambler. Each
element in the column gives the relative power transferred to
the angle indicated by the row index. If power spread was
independent on the input angle, the matrix product would be
equivalent to a convolution of a single function by the input
power vector. This, however, is not the case as the images
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Figure 2. Radial profile images for the three tested fibers. The upper row shows data for the GH fiber, the middle row for the PGU fiber and
the lower row for the HFB fiber. The leftmost images show data without the scrambler, the middle images show data with the scrambler, and
the rightmost images show data predicted by the scrambler model.

show that the scrambler induces a power spread that affects a
wider angular range for higher angles. Therefore, we assumed
that the spread increases as a function of input angle, which
is equivalent to modeling the scrambler as a linear but angle-
variant system. To model this power spread we used a Gaussian
whose standard deviation and center depend on the angle θi, as
given by the following equation:

G(θi, θo) = H (θi)· exp{−((θo − g·θi)/σ (θi))
2}, (2)

where g is a parameter to model center deviation. The function
H (θi) accounts for the angular-dependent power loss which is
modeled by a flat function of a sharp fall above 30◦ given by

H (θi) = h/(1 + exp((|θi| − 28◦)/2◦)), (3)

where the parameter h represents the overall power loss.
Finally, the angular-dependent width, σ(θi), is given by

σ(θi) = a − b· exp(−(|θi|/c) f ), (4)

where the parameters c and f control the rate of increase of
the standard deviation with angle, while a and b determine

its value at 0◦ and high angles, respectively. Other similar
functions could be used but the Gaussian is easier to work with
and gives a good agreement with the experimental behavior
of the scrambler. The six free model parameters were fitted
to the pooled data of the three fibers. As in the previous
analysis we did not find significant differences between the sets
of parameters obtained by fitting data for each fiber separately.
Using equation (2) with the parameters for the best fit we
obtained the matrix S, shown as an image in figure 3. With
the matrix S and equation (1), we obtained the images on the
right of figure 2 using the profiles shown in the left images
as input Pi. These images are quite similar to those in the
middle, demonstrating that the matrix S gives a good account
of the scrambler effects. The differences in the maximum
values of the modeled and measured radial profiles are due to a
difference in the overall losses for each fiber. As the scrambler
parameters were obtained by fitting them to the pooled data
for the three fibers, the overall attenuation obtained was a
compromise for the three fibers. If the scrambler matrix is
fitted to each fiber, the level can be more accurately matched
but we think it more useful to have a unique scrambler model,
independent of fiber type.
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Figure 3. Image representation of the scrambler characteristic
matrix, S, calculated using the parameters for the best fit whose
values are: a = 15◦, b = 7.5◦, c = 11.35◦, g = 0.96, f = 3.19 and
h = 0.0086.

3. Joint scrambler and propagation model

Our aim here is to show the flexibility of our propagation
model in matrix form to incorporate different localized effects
once they have a matrix characterization such as the scrambler
under study. Gloge’s power flow equation describes the
evolution of the modal power distribution as it is transmitted
throughout a POF where different modes are characterized
by their propagation angle with respect to the fiber axis
(θ), considered as a continuous variable. Angular diffusion,
d(θ), and attenuation, α(θ), are described as functions of the
propagation angle, characteristic for each fiber type, and were
estimated from experimental FFPs for the three fibers used in
this work [4]. To solve this differential equation we implement
a finite-difference method in a matrix form where, for any pair
of lengths, z2 > z1, we can put the difference equation in
matrix notation as

p(z2, ω) = (A(ω) + D)m · p(z1, ω), (5)

where p(z1, ω) and p(z2, ω) are column vectors giving the
angular power distribution in the frequency domain at two
fiber lengths, whose difference is m times the elementary
length [7]. A is a diagonal matrix that describes power
propagation without diffusion, while the tri-diagonal matrix
D, which does not depend on frequency, accounts for fiber
diffusion. These matrices are calculated from α(θ) and d(θ),
respectively, and thus are different for each fiber type.

This model, along with the characteristic matrix of the
scrambler, S, is used to predict its effects on different
transmission properties. The effect of the scrambler has been
analyzed for two different scrambler positions: near the input
end of the fiber and near its output end. Thus, the scrambler
matrix has to be introduced as the right or left matrix product
of S by the fiber propagation matrix, (A(ω) + D), depending
on whether the scrambler is at the input or at the output end,

respectively, such as the following equations show:

p(z2, ω) = (A(ω) + D)m · S · p(z1, ω), (6)

p(z2, ω) = S · (A(ω) + D)m · p(z1, ω). (7)

From p(z, ω), different transmission parameters can be
obtained such as the frequency response or the output angular
distribution as a function of fiber length [7]. These equations,
which account for the combined effects of scrambler and fiber
propagation, will be used next to test the model performance.

4. Model validation and predictions

Once we have a joint model for the device and the effects of
fiber propagation, we first validate our method by comparing
model predictions to our previous experimental estimates of
bandwidths versus fiber length measured in [9] with the same
scrambler in section 4.1. Moreover, as predictions of different
parameters can be directly obtained with the model where
it is not practical or easy to measure them, we present in
section 4.2 an analysis of the global scrambler–fiber system
behavior for different launching conditions. It is well known
how, due to their large aperture, most POF properties are
strongly dependent on the input source aperture and therefore
different scramblers have been designed to obtain a uniform
overfilled launch [8, 10–12]. Thus, we assess if the presence
of a scrambler near the transmitter guarantees a similar output
pattern independently from the source aperture and fiber
length. In addition, it has been found experimentally that
spatial filtering close to the receptor, such as that produced by a
small-area detector [13] or by a small displacement of the fiber
from the detector [14, 15], can improve the system behavior
in general. In particular, a bandwidth increase has been
reported [9, 16, 17] when placing this particular scrambler near
the detector. Here, we evaluate the extent of this improvement
to determine the usefulness of this or a similar scrambler in
practical POF links.

4.1. Comparison to experimental bandwidth versus length
data

First, we have tested the capability of our propagation model
in matrix form to reproduce experimental measurements of
bandwidth versus length obtained using this same scrambler.
These bandwidths were extracted from experimental frequency
responses measured for the same fiber types and placing the
scrambler in two different positions: near the input and output
end of the fiber. The experimental procedure was based on
the cut-back method, starting from long fiber samples down to
10 m and was described in detail elsewhere [9]. Frequency
responses were also measured without the scrambler and
were correctly reproduced by the propagation model as was
previously published [7]. Figure 4 shows these experimental
results for the three fibers tested, red circles for the scrambler
near the input end and blue squares for the scrambler near the
output end. The left plot shows the bandwidth versus length
for the GH, the middle for the HFB and the right plot for the
PGU.

4



J. Opt. 13 (2011) 055406 M A Losada et al

Figure 4. Comparison of experimental and model predicted bandwidth versus length with the scrambler at the transmitter (circles and red
lines) and with the scrambler near the detector (squares and blue lines).

From equations (6) and (7), we calculated p(z, ω) at the
measured fiber lengths using the same scrambler characteristic
matrix S for all tested fibers. However, the propagation
matrix is different for each fiber as it was obtained using
their characteristic angular diffusion and attenuation previously
estimated from experimental radial profiles in [4]. Thus,
model predictions of bandwidth versus fiber length can be
obtained for the two scrambler positions and are shown in
figure 4, where red and blue continuous lines show the model
predictions for the scrambler at the fiber input and output ends,
respectively. These predictions were directly calculated and
no free parameters were used to fit the model results to the
experimental bandwidths.

The plots show an overall agreement between the model
and the experimental results, except for some discrepancies
for the HFB fiber which can be accounted for by some
inherent variability in the measurement conditions such as
changes in the scrambler insertion, fiber curvatures or defects,
etc. In addition, predictions confirm previous experimental
results that show that, when the scrambler is at the input
end, the bandwidths are narrower than when the scrambler
is near the detector where the scrambler acts as a spatial
filter [9, 16, 17, 14]. In summary, we have demonstrated the
flexibility of the matricial implementation of the power flow
model that can thus accommodate localized disturbances and
correctly predict their effects over transmission properties.

4.2. Analysis of scrambler effects for different launching
conditions

A similar approach to that described in section 4.1 was
followed by changing the source spatial width to calculate
the width and frequency bandwidth of the output power
distribution for the PGU fiber. In real conditions, the injection
width, described as the half-width at half-maximum (HWHM)
of the radial profile, can be tailored to be as narrow as 0.5◦,
reaching up to 60◦ for a Lambertian source. Commercial
sources for POF applications in communications have an
HWHM that ranges from 3.5◦ to 15◦, but here we are going
to test the whole range from 0.5◦ to 60◦ in order to evaluate the
asymptotic behavior of the system.

In figure 5, the output HWHM is shown as a function
of fiber length for several input HWHMs and three different

°

Figure 5. Evolution of the HWHM of the FFP with fiber length. The
input source HWHM ranges from 0.5◦ to 60◦ from lower to upper
lines.

conditions: without a scrambler (black lines), with the
scrambler near the transmitter (red lines) and with the
scrambler near the detector (blue lines). The curves correspond
to increasing injection HWHMs from bottom to top for all
three conditions. The condition without a scrambler, with all
the curves converging to a value near 20◦, shows the effects
of propagation over power distribution. For narrow inputs,
the input pattern is widened by power diffusion, while wider
inputs are narrowed by differential attenuation. The effect of
the scrambler near the optical source is to reduce the variation
with length, but it is difficult to produce the same output
independent on the source and the fiber length. In this case,
the distributed effects caused by power propagation dominate
over the localized diffusive effects of the scrambler.

On the other hand, when the scrambler is placed at the
detector side, it determines the shape of the pattern which
reaches a stable level at a narrower width (17◦) than in the
other two conditions, due to the scrambler spatial filtering that
removes the power at high angles.

To analyze the bandwidth enhancement induced by
the scrambler spatial filtering, the percentage of bandwidth
increment versus input HWHM is shown in figure 6 for four
different lengths (12.5, 25, 50 and 100 m). The figure shows

5



J. Opt. 13 (2011) 055406 M A Losada et al

Figure 6. Bandwidth increase versus input HWHM for four fiber
lengths.

that the increment is more significant for lengths from 12.5 to
50 m and input HWHMs from 5◦ to 25◦, reaching a maximum
of 17% for a 12.5 m fiber with input source HWHM of 15◦.
Thus, we have shown that this bandwidth increase is always
present but it is greater for sources in the range of those used in
POF transceivers for communications and fiber lengths suitable
for home applications.

5. Conclusions

We have characterized a corrugated scrambler as a matrix,
independent of fiber type, that describes power spread over
adjacent angles. We predicted bandwidths introducing the
scrambler into the matrix propagation model whose agreement
with previous experimental data validates the joint scrambler–
fiber model. Therefore, we have demonstrated how the
matrix power flow equation can be used, not only to model
propagation, but can also be extended to introduce localized
spatial disturbances in a compact and simple way. Thus, our
results reveal the potential of the matrix approach of the power
flow equation to study the macroscopic effects of devices, such
as scramblers, tappers, etc, and the impact of curvatures and
torsion, over light propagation in plastic optical fibers that can
be useful when deploying home or car networks.
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Jiménez F 2005 Design of mode scramblers for step-index
and graded-index plastic optical fibers J. Lightwave Technol.
23 1253–60

[13] Mateo J, Losada M A, Garcés I, Arrúe J, Zubia J and
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