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Abstract

The Karhunen-Loéve transform (KLT) has been applied to study the ventricular repolarization
period as reflected in the ST-T complex of the surface ECG. Characterisation of the repolarization
period (which may contain subtle evidence of cardiac electrical instability) must take account of the
entire ST-T period. We have used the KLT as a sensitive means of quantizing ST-T shape with
an overall index, the kl coefficients. Since the KLT is signal dependent, we assembled a diverse
set of roughly 100,000 ST-T complexes from 105 fifteen-minute excerpts of digitized two-channel
ambulatory ECG recordings. First, using uniformly sampled ST-T complexes, we derived a set of
KLT basis vectors that permit representation of 90% of the signal energy using 4 KLT coefficients
for each ST-T complex. In a second experiment, Bazett’s correction was used to normalize the ST-
T duration, after which a second set of KLT basis vectors was derived which was more efficient in
signal representation. Since a truncated KLT expansion tends to favour representation of the signal
over any additive noise, a time series of KLT coefficients, obtained from successive ST-T complexes, is
better-suited for representation of both medium-term variations in ST-T morphology (such as ischemic
changes) and short-term variations (such as ST-T alternans) than discrete parameters such as ST level
or other local indexes. For analysis of ischemic changes, we describe an adaptive filter that may be
used to estimate the KLT coefficients, yielding an increase in signal-to-noise ratio of 10 dB (u = 0.1),
with a convergence time of about 3 beats. We use a beat spectrum of the UN-filtered KLT coefficient
series for detection of ST-T alternans. Finally, we illustrate these methods with examples from the
European ST-T Database obtaining that about 20% of records at the database reveal a quasi-periodic
salvos pattern of ischemic (or ST-T changes) episodes and other 20% exhibit repetitive but not clearly
periodic patterns of ST-T change episodes. It has been obtained that about 5% of ischemic episodes

present alternans associated with them.

Keywords: ST level, ST-T complex, Ischemia, KL Transform, Alternans, Monitoring.

1 Introduction

Electrocardiographic (ECG) information is derived from analysis of both the depolarization (QRS complex)
and repolarization (ST-T waveform) phase of the cardiac electrical cycle. Considerable interest has been
directed at ventricular repolarization (VR) in recent years because subtle ST-T changes may be a marker of
electrical instability that might result in increased susceptibility to ventricular fibrillation (VF), and sudden
cardiac death (SCD) (ROSENBAUM ET AL., 1994). Repolarization may be perturbed by multiple factors
including ischemia, structural heart disease, metabolic factors (e.g. electrolyte abnormalities, drugs) and

neurohumoral factors.

At present, there are no generally accepted non-invasive indices of the risk of SCD, although such indices
would have very substantial implications for both public health policy and medical practice, and many
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studies have sought to develop such indices. Among the most promising candidates are measurements of
heart rate variability (HRV) (KLIEGER ET AL., 1984; MYERS ET AL., 1986), ventricular late potentials
(BERBARI AND LAzzARA, 1988; BREITHARDT ET AL., 1991), repolarization duration (QT) interval
(Puppu AND Bourassa, 1986), QT variability (MERRI ET AL., 1993; SPERANZA ET AL., 1993),
assessment of heterogeneity of repolarization (Q-T interval) in different leads, and repolarization alternans
(CLANCY ET AL., 1991; ROSENBAUM ET AL., 1994) (a possible precursor of ventricular fibrillation).
Except for the first two, all of these indices are derived from the ST-T complex of the ECG, which has
long been known as a highly sensitive (though arguably less predictive) marker of myocardial ischemia

(GALLINO ET AL., 1984; AKSELROD ET AL., 1987).

Most, of these indices to describe VR are derived from discrete features of the ST-T complex, a practice
that reflects the difficulty of deriving integrated measurements using visual analysis. However the ST-T
waveform represents a complex spatial and temporal summation of electrical potentials from innumerable
ventricular cells. Therefore, if physiologically and clinically relevant information is contained within the
ST-T complex, this information may not necessarily be concentrated within any individual differential
feature or subinterval such as ST levels and QT intervals, but may be represented by the entire ST-T
waveform. The proliferation of additional “heuristic” measurements that describe the ST-T complex shape
clearly demonstrates the need to consider more than the traditional measurements in order to characterize
subtle changes in VR. Furthermore, noise and other sources of measurement error (such as errors in
fiducial or baseline estimation) have far more deleterious effects on measurements of isolated features and
simple differential measurements than on integrated measurements. These considerations, together with
the increasing evidence for the importance of repolarization alterations as a marker of electrical instability
and SCD, led us to consider the objective of developing an analytic technique based on the entire ST-T

complex.

We chose to use the Karhunen-Loeve transform (KLT) which has the power to characterize the shape of
the entire ST-T complex, and which is minimally affected by noise. We propose that a feature set of KLT
coefficients would provide a superior method for characterizing each beat, and that the KLT feature set
would provide a much more sensitive and robust quantization of ST-T shape than the discrete measures
commonly used in clinical practice, like ST or QT measures. In a previous study (JAGER ET AL., 1992),
the KLT was successfully applied to analyze the ST segment of the ECG, with the specific aim of obtaining
noise-tolerant methods for ischemia detection. In this study, we have applied the KLT to the entire ST-T
complex, in order to include as much information about VR as possible, with the broader aim of noise-

tolerant characterization of both beat-to-beat and longer-term variations in VR.

In the following sections, we describe our technique for ST-T complex representation, including
construction of KLT basis functions and derivation of KL,, coefficient time series, ki, (i). We also present
an adaptive filter (LAGUNA ET AL., 1996A; THAKOR ET AL., 1993), suitable for estimating the ki, (i)
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time series, that reduces the noise of the ki, (i) estimation while preserving the deterministic coefficient
information. We apply these techniques to ECG records from the European ST-T Database, and we show
how the first and second ki, (i) (n = 1,2) series may be used to monitor ST segment changes in these
records. We illustrate this point with examples of periodic behaviour of the ischemic process within these
records. We also analyze the power spectral density (PSD) of the kl,,(i) series. This analysis is done using
PSD estimation of the kl,, (i) coefficients expressed with temporal reference the beat order (DEBOER ET AL.,
1984) (as previously used for HRV analysis) rather than the beat occurrence time ¢;. This analysis also
points out the possibility of detecting ventricular alternans using the peaks of the spectrum at 0.5 beat™!
“beatquency”. We show examples (from the European ST-T Database) of the appearance of alternans in

association with ischemic ST and T-wave changes, which were successfully detected by this method.

2 The Karhunen-Loeve transform applied to the ST-T complex

The KLT (HADDAD AND PARSONS, 1991) is a signal-dependent linear transform that is optimal in the
following sense: for a given signal (an ST-T complex) lasting N samples and any given number of parameters
n < N, if the signal is reconstructed from the first n terms of the series expansion of a linear transformation,
the lowest expected mean-squared error will be obtained if the transform is chosen to be the KLT. The
KLT thus has two major advantages over other linear transforms: it concentrates the signal information
in the minimum number of parameters, and it defines the domain where the signal and noise are most
separated. These properties are obtained at the expense of generality, however: it is by estimation of the
“most likely” variations in waveform shape that the KLT acquires its property of noise rejection. A KLT
for a given type of signal must be derived from the statistics of examples of that signal; it is unlikely to
be useful (with the same optimal properties) for analysis of other types of signals. Thus, a significant
constrain of the KLT is that it is necessary to collect a representative “training” set of the signals to be
analyzed, in order to derive the KLT basis functions (eigenfunctions). The performance of the KLT, in
terms of capacity to concentrate information in a small coefficient set, depends on how well the training
set has been constructed. Once each ST-T complex is characterized by n kl coefficients we construct n kl

series (kl, (7)) as the series formed by the ki coefficients of the ith beat.

In this section we describe our technique for analyzing the ST-T complex using the KLT. First we discuss
the derivation of the training set, including the preprocessing performed on the ECG to attenuate noise
and to exclude beats likely to be significantly corrupted by noise. We then present an adaptive filter for

estimating the ki, (i) series of an ECG record.

In this work, we represent each ST-T complex first by a pattern vector, x, whose components are the
time-ordered samples of the ST-T complex (after baseline correction and normalization, described below).

The KLT is a rotational transformation of a pattern vector into a feature vector, whose components are
4



the KLT coefficients. As shown below, the first few components of the feature vector represent almost all

of the signal energy, and the remaining components need not even be computed.

The derivation of the KLT basis functions begins by estimating the covariance matrix C of the pattern

vectors of the training set (HADDAD AND PARSONS, 1991),
C = B{(x - m)(x—m)"} (1)

where m is the mean pattern vector over the entire training set. The covariance matrix reflects the
distribution of the pattern vectors in the pattern space. The orthogonal eigenvectors of C are the basis
functions of the KLT, and the eigenvalues, \j, represent the average dispersion of the projection of a pattern
vector onto the corresponding basis function. After sorting the eigenvectors in order by their respective
eigenvalues, such that A\ > A\p4q, for £ = 0,1,...., N — 1, the corresponding basis functions are arranged
in order of representational strength. The basis function corresponding to the largest eigenvalue is that
function best able to represent an arbitrary pattern vector from the training set; the next function is the
(orthogonal) function best able to represent the residual error obtained from fitting the first function, etc.
The value of N is equal to the number of components in the pattern vector, and depends on the length of
the waveform and on the sampling frequency; in this case the length is 600 ms, and the sampling frequency

is 250 Hz, so that N = 150.

In this study, the mean pattern vector m can be forced to be zero, if we assume that each ST-T complex
in the training set can represent both itself and its inverted counterpart. This represents the possibility
that any ST-T complex may appear inverted simply as an artifact of the choice of the lead polarity when

recording the ECG. Thus, the covariance matrix may be expressed simply as
C=E{(x)x)"} (2)

and the eigenvalues, rather than representing the average dispersion of the ST-T projection onto the

associated basis function, instead represent the average energy of this projection.

2.1 Derivation of the training set and the KL, basis functions

To obtain a representative training set of normal and abnormal ST-T waveforms we selected a wide variety
of ECG records, 105 in all (LAGUNA ET AL., 1997) (15 from the MIT-BIH Arrhythmia Database (MOODY
AND MARK, 19904), 6 from the MIT-BIH ST Change Database, 13 from the MIT-BIH Supra-ventricular
Arrhythmia Database, 10 recordings of healthy subjects from BIH, 33 from the European ST-T Database
(TADDET ET AL., 1992), 4 from the MIT-BIH Long-Term Database and 24 from SCD recordings collected
at BIH) which included a wide spectrum of T-wave shapes, ST elevation, ST depressions, etc. From each

of these 105 recordings, a 15-minute excerpt was selected. Since the noise discrimination power of the KLT

5



depends on the distribution of the pattern vectors as reflected in the covariance matrix, we tried to avoid

including segments that were obviously corrupted by baseline wander or other noise.

From these 105 fifteen-minute records, we selected the training set of ST-T complexes according to the
following procedure. First, QRS complexes were detected and labeled using ARISTOTLE software (MOODY
AND MARK, 1982). Each detected QRS complex was marked at a fiducial point corresponding to the
centre of gravity of the significant peaks of the convolution of the QRS complex with the QRS detection
function, a matched filter characterized by a W-shaped impulse response. This method of fiducial point
placement was chosen for its stability with respect to minor morphology changes, as in respiration-related
axis shift, as well as for its tolerance of impulse noise. The QRS fiducial points generally coincide with the
R-wave peaks of monophasic QRS complexes, and lie between the major positive and negative deflections
of biphasic QRS complexes. We defined the ST-T complex as the portion of the signal within a window
beginning 85 ms following a QRS mark, ¢;, and ending 240 ms prior to the next QRS mark, ¢; ;. If the RR
interval, rr; (defined as the interval between the QRS marks), is less than 720 ms, the end of the window
is located at ¢; + %rri (i.e., 2/3 of the way from the initial QRS mark to the following one). This strategy
permits inclusion of the whole ST-T complex, independently of the QT duration. (The ST-T window is
restricted to 600 ms.) In those cases when T waves end later than 240 ms prior to the next QRS mark
it is very likely that T waves are distorted by the next P wave. It is better to exclude those beats rather
than have them corrupt the training set. These values have been selected according to the clinical values
of intervals and from our experimental work when deriving the KLT of the ST-T complex. When we refer
to ST-T as defined here we include the U wave, in the cases where it exists. This will be observed later

when discussing Fig. 2 .

To avoid the effects of ectopic and other abnormal beats on the ST-T complex, we accepted only ST-
T complexes associated with QRS complexes labelled as normal by ARISTOTLE (MOODY AND MARK,
1990B), and further required that both the previous and following QRS complexes also be labelled as
normal. For each beat, we estimated the isoelectric level in the PR interval as the signal averaged during
the 20 ms interval beginning 80 ms prior to the QRS mark. This isoelectric value, measured in the different
beats, was used as input to the cubic splines interpolation of the ECG signal in the baseline cancellation
(MEYER AND KEISER, 1977). Beats for which the estimated isoelectric level differed by more than 0.2
mV from that of the previous or following beat were excluded from the training set. The presence of delta
waves associated with pre-excitation (Wolff-Parkinson-White syndrome) in four records required us to use
intervals beginning 100 ms (records sel50, sel308, and sel17152) or 120 ms (record sel230) prior to the QRS
mark for the isoelectric level estimation in these cases. We then manually rejected a small number of ST-T
complexes we judged subjectively to be particularly noisy. The remaining 97,663 ST-T complexes formed

the training set.

We generated the set of pattern vectors for the training set in six different ways, to test the effects of
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ST-T dependence on heart rate (HR) and of noise on the KLT representation. We used both uniformly
sampled ST-T complexes, and complexes corrected with Bazett’s formula (BAZETT, 1920) and resampled.
We corrected for baseline variation using cubic splines and using a high-pass filter. (Since the KLT basis
functions will be influenced by incorrectly determined isoelectric levels, we selected recordings with minimal
baseline variation. Even in such recordings, however, it is still necessary to account for baseline variation
caused by respiration.) Finally, given the low-frequency content of the ST-T complex (THAKOR ET AL.,
1984), we have also studied the effects of bandpass filtering the ECG signal as a means of improving the
signal-to-noise ratio. These considerations led us to develop six sets of pattern vectors from the training

set:

1 Using cubic splines for baseline removal (MEYER AND KEISER, 1977). The knots were taken to be

the centres of the isoelectric intervals, as defined above.

2 Asin set 1, but correcting for the effects of heart rate on the ST-T complex using Bazett’s formula.
This is performed by re-sampling within the ST-T window at a sampling frequency equal to the
original (250 Hz) divided by /r7;, where rr; is the previous RR interval and is expressed in seconds.
The result is a corrected ST-T complex, STT,(t') = STT(t/\/rrs)-

3 Using a second-order high-pass filter (LYNN, 1977) with a cut-off frequency of 1 Hz for baseline

removal.
4 Asin set 3, but with HR correction as in set 2.

5 Using bandpass filtering: a high-pass filter as in set 3, together with a second-order low-pass filter

(-3 dB at 28 Hz) for attenuation of high-frequency noise.

6 Asin set 5, but with HR correction as in set 2.

In each case, the pattern vectors were normalized by magnitude (i.e., scaled such that the signal energy
was constant); in this way, each pattern vector is accorded equal importance when deriving the KLT basis

functions.

Since the durations of the ST-T complexes vary (the final part of the ST-T complex is not always available
due to the appearance of the next P-wave and QRS complex), the estimation of certain elements of the
covariance matrix is problematic. Although one might extend the pattern vectors (by adding zero elements)
so that all are of equal length, this procedure would tend to reduce the significance of non-zero elements in
these positions when they are available, thereby lending an artifactual bias in favour of the initial elements.
We prefer to address this issue by estimating each element of the covariance matrix using only those ST-T
complexes for which the corresponding elements are available. This procedure avoids introducing artifacts
of the window definition into the covariance matrix estimate; its consequence is that the final portions of

the derived basis functions are derived from a smaller sample than the initial portions.
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[Figure 1 about here.]

In Fig. 1 we plot the cumulative eigenvalue energy (CEE)
CEE(n) = 100%01); (3)
k=0 "k

as a function of the KL,, order n, for the KLT basis functions derived using pattern vector set 1 (with cubic
spline baseline correction, Fig. 1la) and for the KLT basis functions derived using set 2 (with correction
for heart rate, Fig. 1b). Note how the CEE for set 2 is higher than the CEE for set 1 for low values
of n, reflecting the reduction in waveform variability once the effects of heart rate are (at least in part)
accounted for. This results in representing approximately 5% more energy by the first two HR corrected
basis functions than by their uncorrected counterparts (Fig. 1). In the training set, the average HR is
quite low, as a result of our requirement of minimal baseline wander (generally accompanying low levels
of physical activity and consequent low HR). This works to the disadvantage of the set 1 basis functions,
since there is relatively little representation of ST-T complexes corresponding to high HR, with energy
concentrated in the initial part of the window. The HR-corrected pattern vectors corresponding to ST-T
complexes in high HR, however, closely resemble those in set 2, and are thus better represented by the

low-order KLT coefficients of set 2 than those of set 1 (for an example, see section 2.2).

Although correction for HR produces an improvement in the quality of the KLT, we do not observe any
improvement using high-pass or band-pass filtering (pattern vector sets 3, 4, 5, and 6). This result agrees
with the supposition that the KLT is the most effective linear method for separating the signal from the
noise, and that any other linear filter cannot produce further improvements. Cubic-spline correction of

baseline variation produced slightly better results than high-pass filtering.

The first 14 KLT basis functions are displayed in Fig. 2 for the uncorrected set 1 (solid lines) and for the
corrected set 2 (dashed lines). It is apparent that the energy in the corrected set is concentrated at a later
time than in the uncorrected set. Since most heart rates exceed 60 beats per minute, the correction applied
to most ST-T complexes tends to stretch them (i.e., to move the concentration of energy toward the end of
the window). The first basis function, and to a lesser extent the second one, represent the dominant low-
frequency components of the ST-T complex concentrated in the first 400 ms after the QRS. The next few
basis functions contain more high-frequency energy, and contain energy more evenly distributed across the
entire complex. These functions represent components present in abnormally prolonged ST-T complexes
and in U waves where present within the window. The remaining higher-order basis vectors shown in
Fig. 2 contain almost exclusively high-frequency content related to noise in the training set. By inspection
of the basis vectors, we can predict that the first two KLT coefficients, klo(i) and kl; (i), should be a good
tool for detecting ischemic ST-T changes, since they contain virtually all of the low-frequency energy; we
discuss this point further in section 3.2 below. Also, looking to the basis 0, it is apparent that it will

mostly represent ST segment elevation waveforms (has a positive value at the ST segment) that will result
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in positive klo(7) values, on the contrary, basis 1 (has a negative value at the ST segment) will represent

ST segment depressions waveforms resulting in positive kl; (i) values.

[Figure 2 about here.]

2.2 KLT representation of the ST-T complex

[Figure 3 about here.]

To illustrate the ability of the KLT to represent an arbitrary ST-T complex, we will analyze in this
section the reconstruction of several real ST-T complexes. In Fig. 3 we present the reconstruction of three
ST-T complexes with 3, 5 and 8 KLT coefficients, using both set 1 (uncorrected) and set 2 (HR-corrected)
KLT basis functions. The first complex (Fig. 3a,b) includes a prominent U wave. Since high amplitude
of U waves was unusual at the training set, a faithful reconstruction requires more than the first few
KLT coefficients. The RR interval in this case is 1228 ms, implying only a small HR correction; we see,
however (Fig. 3b) how this small shift to the left results in a markedly better reconstruction with the low
order coefficients. At the right, the cumulative signal energy (CE(n) = 100 7_ kl%/ SN STT? (k) s
shown for each reconstruction. Panels ¢ and d of Fig. 3 show an ST-T complex during high HR (RR=440
ms). The signal energy is concentrated in the earliest part of the ST-T, and is poorly represented by the
uncorrected KLT coefficients (Fig. 3c). The HR correction in this case shifts the ST-T complex to the
right, producing a much better representation with the first three coefficients (Fig. 3d). This example
shows the value of HR correction in cases where the HR is quite far from typical values. Finally, panels
e and f of Fig. 3 present the reconstruction of a biphasic ST-T complex with RR=812 ms. Given that
this shape is not dominant in the training set, more coefficients are required for an accurate reconstruction
than in typical cases. The HR correction in this case is small, but a small improvement in the low-order
reconstruction is still obtained. It always remains the question of how many coefficients are needed for an
accurate reconstruction. For very rare wave-shapes (that always can occurs) it may be required a much
larger number of KLT coefficients, but in our studies we did not found clinically significant wave-shapes

that were not well overall reconstructed with the first 3 to 4 coefficients.

3 Monitoring the kl,(i) series

In previous section we have described how to derive a KLT representation of a single ST-T complex. In
clinical practice, the dynamic behaviour over time of ST-T morphology is even more important than the
characteristics of an isolated complex. ST-T dynamics can be characterized by the study of KLT coefficient

time series, ki (i), using many of the techniques used in studies of HRV. We can assign to each beat mark
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(QRS fiducial point) the KLT coefficients of its ST-T complex. In this way we will have as many (scalar)
time series as there are KLT coefficients needed to represent the ST-T complex. The direct way to monitor
kl,, (%) is to obtain it from the inner product of the KLT basis with the pattern vectors of the ST-T complexes
to be analyzed. These pattern vectors are obtained in the same manner as those in the training set (using
cubic spline baseline removal, and HR correction if we are using the set 2 KLT). In this case, however, we
do not normalize the energy of the ST-T complex pattern vectors, since we are interested in monitoring
variations in energy as well as in morphology. We are not so restrictive as in the training set for rejecting
beats, since now the obtained kl,, will influence only the beat that represent and not affect the others as
could happen if considered at the training set. The inner product is performed over the interval in which
the ST-T complex is defined (not necessarily the entire window over which the basis function extends); this
policy is equivalent to appending additional zero components to the pattern vector as needed to match its

length to that of the basis function (see section 2.1).

Direct estimation in this way, however, results in a noisy kl,,(¢) time series. Noise is introduced into the
kl, (i) time series from a variety of sources, including noise in the ST-T complexes not removed by the KLT,
residual error in the KLT domain representation of the ST-T complexes, misestimation of the isoelectric
level (because of noise in the PR interval, or QRS fiducial misestimation), residual baseline variations, and
ectopic beats not rejected. Noise in the kl,(7) time series may be reduced using an adaptive filter that
removes noise uncorrelated with the ST-T complex. This technique is useful for monitoring medium- to
long-term variations in the ST-T complex, such as for detecting ischemic ST-T changes; on the other hand,

when we are interested in beat to-beat variations (alternans), direct kl,, (i) estimation is necessary.

3.1 The adaptive kl,(i) estimate

Adaptive estimation of quasi-periodic signals such as the ST-T complex permits reduction of noise
uncorrelated with the signal, with attendant improvements in the ability to track subtle dynamic variations
in these signals. This technique has been applied to analysis of ECG signals (LAGUNA ET AL., 19964;
LAGUNA ET AL., 1992) and evoked potentials (THAKOR ET AL., 1993). It makes use of the recurring

features of the signal and is based on the adaptive linear combiner (WIDROW AND STEARNS, 1985).
[Figure 4 about here.]

In effect, the adaptive filter input signal (the primary input, dy) consists of concatenated ST-T complexes
ounly, with all intervening data removed. Short complexes are lengthened by appending zeroes as necessary,
so that a new complex begins every N samples. The adaptive system dynamically estimates the amount of
each reference input present in the input signal. In (LAGUNA ET AL., 19964A) the reference inputs used for

the estimation of the deterministic signal were the orthonormal Hermite functions; in (LAGUNA ET AL.,
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1992) the reference inputs were unit impulses, and in (THAKOR ET AL., 1993) they were sine, cosine and
Walsh functions. In the present study, the reference inputs are the KLT basis functions to be used to

represent the ST-T complexes.

Figure 4 shows this process in schematic form. We define the beginning of each ST-T complex (85 ms
following the QRS fiducial mark in each case) as the time of the stimulus. The N samples that follow the
stimulus are assumed to be the sum of the signal of interest (a deterministic signal component, s = ST'T,
correlated with the stimulus) and an uncorrelated noise component ny. If the deterministic component, is

strictly periodic with a period of IV samples, then it satisfies s = s;4n for all k.

The reference inputs KL; ; (j =0, ..., n — 1) (n < N) are formed by concatenating copies of the jth

KLT basis function to be used to represent the ST-T complexes; thus KL; = KL;j p4n-

In the KLT vectorial space, d; may be expressed as the sum of all the KLT components and the
uncorrelated noise:
N-1

dp =kl KLj y +ny . (4)

j=0
The output of the adaptive filter, yy, is the signal that we want to be an estimate of si, and ey is the

error signal ey = sy + ng — Y with

n—1

yk:ijkKij (5)

j=0
If KL}, denotes the vector of reference inputs and Wy, the weight vector
KLy = [KLg 3, KLy g, .o, KLp_y 1]" Wi, = [Wo , W1 ks ooy W1 £)" (6)
then
yr = KL W, = W/ KL,. (7)
Minimizing the mean squared error & = Ele3] using any adaptive algorithm (WIDROW AND STEARNS,
1985), the weight vector converges to the optimal solution W* = R™'P (WIDROW AND STEARNS, 1985),
where

R = E[KL, KL]] and P = E[d KL;] (8)

In this case, given the orthonormality conditions of the base elements of KLT vectorial space and (by

definition) the lack of correlation between the noise nj, and the KLT basis KL, , R and P reduce to

1 1
R: NI and P = N[k107kl17”"kln—1]T R (9)

and the optimal weight vector, W*, that minimizes the mean squared error, £ = E[eﬁ], is given by

W* = [klo, kly, ..., klp_1]" . (10)
11
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This result means that each weight w; is an estimate of the ith KLT coefficient for s;. Thus the weight
vector is a characterization of the deterministic signal component, and the output signal yy, in the optimum

case, takes the value
n—1 n—1

yk:Zw;Kij:Zkleij, (]-]-)

j=0 j=0
i.e., the projection of s; onto the subspace spanned by KL; (i =0, ..., n — 1) with n < N. Thus y;

is the nth-order KLT representation of sy, and y, = s if n = N (i.e., if all of the KLT components are

included).

The minimum mean squared error, &,i,, will be
Emin = Eld}] — PTW™. (12)

Given that the weight vector oscillates around this optimal value, y; is an unbiased estimate of s,. The
remaining noise due to the misadjustment (M) depends upon the adaptive algorithm used to adjust the
weight vector (WIDROW AND STEARNS, 1985). The elements of the weight vector, evaluated at the end
of each ST-T complex, are the adaptive estimates of the KLT coefficients of that complex. The quality of

the yj, estimation is thus directly related to the quality of the KLT estimation.

In this study, we have used the Least Mean Squares (LMS) algorithm (WIDROW AND STEARNS, 1985)
Wi = Wi + 2per, KLy (13)

The condition that assures the convergence of the algorithm is (FEUER AND WEINSTEIN, 1985):

1 N
_N 14
0<'u<3tr[R] 3n (14)

The time constant (7,,s¢) for the convergence of the MSE is:

1 N

mse — 1 N — 4 1
i dpuh  Ap (15)

where A = % is the eigenvalue of the matrix R (all the eigenvalues are identical). 7,,s. is expressed in

sampling intervals. The gain constant, u, thus controls the stability and the speed of convergence. The
estimate of the weight vector may be obtained within a single beat given an appropriate choice of y that
satisfies, (Tmse < INV) if necessary. Thus adaptive filtering may be used in principle even for tracking

beat-by-beat ST-T variations.

To measure the excess of mean squared error we calculate the misadjustment (WIDROW AND STEARNS,

1985)

M= FExcess MSE , (16)

fmin

which for the LMS algorithm can be approximated by (WIDROW AND STEARNS, 1985):

M~ ptr[R] = ,u%. (17)
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The mean square error £ is

§=Emin(l+ M) = (1+ %) % > K+ En;] | (18)

The MSE thus depends on the noise power, the power in the ST-T complex not represented by the first n

kl, coefficients, and the gain constant, u. Note that the dependence on the KLT order n is not strong, since

N-—-1
j=n

an increase in n value increases the (1 + %) factor and decreases the ) kl? factor. Thus, the optimum
solution minimizes n and maximizes Z;l;ol kl%; this property is intrinsic to the KLT. Given that at the
steady state the estimated signal yj is orthogonal to the error e, (WIDROW AND STEARNS, 1985), the
Ezxcess MSE is the excess of error power introduced in yj,, and the signal-to-noise ratio of this estimation,
SNR,, will be

b Sk |
() (% 205 k2 + B3))

If we consider that the ST-T energy is strongly concentrated in the n first coefficients, we can neglect the

SNR, = (19)

term Zj\!nl kl%, obtaining
1 N1 g2
1 AP £ N
SNR, = % ~ SNR;— . (20)
(‘) Eni] pn

where SNR; is the SNR of the original signal. Comparison of this SINR, with that obtained from the
direct estimation of kl, (i) will give the SNR improvement (ASNR) achieved by the adaptive system.
Direct kl,,(i) estimation yields a signal-to-noise ratio, SN RZ”eCt, that can be estimated if we assume the

noise is white and that its PSD is uniformly distributed in the KLT domain:

N o0 kI3 N
SNRdirect = NS0 "7 ~ GNRy—. 21
Y En]% “n (1)
Thus the SNR improvement obtained using the adaptive filter is

SNR 1
ASNR= 2w _ 2 22
s SNR;}"“t m (22)

Thus we find that, for appropriately chosen values of u, the adaptive estimate of kl,, (i) is cleaner than a
kl,(7) time series obtained directly from the inner product. The choice of p involves the typical trade-off
between stability and rate of convergence, which limits the amount of improvement that can be obtained in
practice, given the need to track changes occurring within a few beats in typical cases. When the interest of
the estimation is in the ischemic changes that occur gradually from beat to beat the convergence restriction

will be that it occurs in a reduced number of beats. Next section will consider the real case election.

3.2 Application to real signals with ischemic episodes

In this section we present the results of estimating and monitoring the ki, (i) values on several real ECG
records. The parameters that we have selected for the adaptive estimate are p = 0.1, with n = 4 ki,,(4)

functions and N = 150. These values do not approach the convergence limit p;,, = 12.5, and give a time
13



N — 375 = 2.5 beats. This convergence time is reasonable for monitoring ischemic ST

constant 7,5 = i

changes that typically occur over much longer intervals. The ASN R obtained in this case is 1/ = 10 dB,

representing a large improvement in the ki, () estimation.

The real signals are taken from the European ST-T database (TADDEI ET AL., 1992). This database
contains records manually annotated by clinical experts who identified episodes of significant ST-T changes
consistent with ischemia. The database was designed to provide a resource for the development and
evaluation of automated ischemia detectors. All of the patient records in the database have been analyzed
with our KLT technique, and its performance is illustrated by several selected cases chosen to illustrate

the properties of the KLT technique.
[Figure 5 about here.]

To assist in the interpretation of the kl coefficients we show in Fig. 5 the kly time series from the ECG
of a patient during Percutaneous Transluminal Coronary Angioplasty (PTCA). The ST-T complex shows
marked morphological variations from inflation to post-inflation. Note that how during the first period
(balloon inflation) the ST segment is positive as is klyp. During the post-inflation period the ST-T complex
inverts its amplitude and oscillates in magnitude. This is reflected in the klj series as an oscillating negative

value of the klj coefficients.
[Figure 6 about here.]

Figure 6 illustrates ki, (i) time series, each two hours in length, for three ECG records from the European
ST-T database. Fig. 6a compares the klo(i) series of record e0103 for each of the two recorded ECG leads,
estimated as the inner product between the ST-T complex and the first (uncorrected) KLT basis function.
Fig. 6b shows the same series, obtained using the adaptive estimate with the parameters as given above,
and showing a ASNR of about 10 dB compared with those of Fig. 6a. Note the simultaneous appearance
of ischemic ST-T changes in both leads, which is repeated quasi-periodically. Note also the similarity of
the temporal pattern of sequential ischemic episodes. The figure clearly shows eight ischemic episodes,
corresponding to the eight peaks in the kl,,(7) time series. Only five of these are marked in the database
reference annotations, since three of these episodes (1th, 2th, and 7th) are below the standard thresholds
for defining ischemic ST-T episodes. The technique we present allows these sub-threshold episodes to
be identified unambiguously, and allows the long-term pattern of quasi-periodic ischemic changes to be
observed more clearly than would be possible otherwise. Since the time series are initialized to zero, the
time required for the adaptive algorithm to reach steady state (at the left edge of plots 6b, d, f) can be

seen to be negligible in comparison with the evolution of the ischemic variations.

Fig. 6¢ shows the klg(i) (left) and kl;(i) (right) series of the ECG signal (only lead MLIII) of record

€0105, and Fig. 6d shows their adaptively estimated counterparts. In this case, each of the seven peaks
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corresponds to an ischemic ST-T episode marked in the database reference annotations. By study of two
or more KLT coefficients in a single lead, we can easily monitor changes in ST-T morphology. Note how
the ST segment elevation that corresponds to potential ischemia in the e0105 record, results in increased
klo(i) values and decreased (negative) kly (i) values, as pointed out in section 2.1. Note again that the

temporal pattern of each ischemic episode is quite constant.

Finally, in Fig. 6e the uncorrected and HR-corrected kl(i) time series for the first ECG signal of record
€0113 are shown, and Fig. 6f shows their adaptively estimated counterparts. As in the previous examples,
the adaptive estimation of ST morphology tracks ischemic changes noted in the reference annotation files
of the database. Note the slightly higher amplitude of the peaks in the HR-corrected series, showing that
the first corrected kl,, (i) basis function is better able to represent the ST-T complexes in this record than
is the first uncorrected ki, (i) basis function. In Fig. 6f, we note that of the eight well-marked peaks,
seven correspond to ischemic episodes annotated in the database, but one other (the second) was not so

annotated in the database, although its presence is quite clear from inspection of the kl,, (i) series.

In the examples presented in Fig. 6 it can be seen that both traces (adaptive and inner product estimated)
reflect the ST-T changes. However when the changes are not so clearly defined (first salvo in a) b), last in
e) , f)) the adaptive estimation is more suited. In addition when considering automatic ischemia detection,
the influence of noise decreases sensitivity and specificity of the inner product with respect to those of

adaptive estimate.

Analyzing the entire European ST-T Database (90 records) we found that roughly 20% of the records
demonstrated the quasi-periodic salvos of ST-T changes shown in Fig. 6. In most records containing
multiple ST-T variation episodes, we noted similarity in the temporal structure of their kl,, (i) time series,
suggesting a similar pathophysiologic mechanism. It is clear that the KLT technique detects and locates
transient ST-T variations. Subsequent detailed analysis of the record and/or collateral clinical information

should be used to determine whether the ST-T variations are actually associated with ischemic episodes.

This technique has been used to design an automatic ischemia detector (GRACIA, 1998) making use of
the first four kl series. The automatic detector can be configured to detect either ST segment, T wave
or ST-T complex episodes (for the detector validation we used the manual annotations in ST segment
and T wave from the European ST-T database and the OR combination of ST and T episodes for the
ST-T complex (TADDEI ET AL., 1992)). The preliminary results obtained in terms of sensitivity (S) and
positive predictivity (+P) are S=81% and +P=80%, when detecting ST episodes. This shows a very good
performance of the technique which can help clinicians in ischemic episodes detection in Holter ECGs and

may be useful for alarms design in coronary care units.
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3.3 kl,(i) series compared to ¢t(i) series

Repolarization is reflected in both the shape of the ST-T waveform, and also in the duration of the
QT interval. We compared the kl,, (i) time series with the ¢t(i) time series using the techniques for QT
estimation described elsewhere (LAGUNA ET AL., 1994). An example from record e0103 is shown in Fig.
7. In this case the ischemic episodes are clearly manifested in the kl,, (i) time series. The ¢t(i) time series
time series taken from lead IIT (but not that taken from lead V4) shows transient increases in QT interval
during the first four ischemic episodes (but not the last three). The QT variations persisted when corrected

for heart rate using Bazett’s formula.

Figure 8 shows that the transient QT prolongation accompanies ischemic ST-T episodes (Fig. 8c), and

becomes even more prominent when heart rate is corrected (Fig. 8d).
[Figure 7 about here.]
[Figure 8 about here.]

Analyzing the entire European ST-T Database (90 records) we found that roughly 50% of ischemic records

showed QT variations in at least one lead associated with the ischemic episodes.

3.4 kl,(i) series compared to st(i) series

To show the differences between conventional ST level monitoring and the £l series monitoring we created
ST level trend plots for several records and compared them to corresponding kl time series. The weighted
averaging method was used to measure the ST segment deviations. This method is especially useful when
the beat-to-beat noise level changes. ST segments were selected from averaged ECG complexes. To assure
convergence properties similar to those of the KLT estimation method previously described, only three
beats were included in each sub-ensemble average. Also only normal beats surrounded by normal beats
were included to avoid artifacts. Each beat was added into the average with a weighting factor inversely

proportional to its noise content. The weighted average (ZHONG AND Lu, 1991) is given by:

Npeat
B(t) =Y wiw(t) (23)

i=1
where Nyeqt is the number of beats to be averaged, z; is the ith beat, and w; is the weight applied to that
beat. For simple signal averaging w; = 1/Npeqt, ie, each beat has an equal weight. The weighting factor is

1 1
w; = <—2> S (24)
i Zj:bl et

g
J

where o; is the noise power of the ith beat. Once each three-beat average had been constructed, the ST

level was measured by taking the mean value in a 10 ms interval centered 60 ms from the end of the QRS.
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[Figure 9 about here.]

In Fig. 9a we show the kly series of record e0129 (two leads) and in 9b the corresponding ST level series
for each lead. Note the significant enhancement of the ST episodes by the KLT method, especially in lead
V3. Figure 10 shows similar plots for record e0103, and again the superiority of the kl trend plots is clear.
From these examples and others throughout the ESC ST-T database, we confirmed our expectation that

the KLT technique is much more robust and sensitive than the single ST level measure.

[Figure 10 about here.]

3.5 ST-T Alternans detection from the kl,(i) series

The KLT can also be used to detect alternans in the ST-T complex. Alternans may be an index of the risk
of SCD (CLANCY ET AL., 1991; ROSENBAUM ET AL., 1994). We calculate a spectrum from the series of
KLT coefficients, with the independent variable being the beat number. The spectrum obtained in this way
is a beat spectrum (DEBOER ET AL., 1984) rather than a frequency spectrum; the units corresponding
to frequency are cycles per beat (beat™' = b~!). This spectrum is best suited for study of alternans, since
we are interested in beat periodicities rather than the time periodicities that require study of frequency

spectra.
[Figure 11 about here.]

Figure 11 illustrates the detection of subtle alternans in record e0105 of the European ST-T Database
using the kl,, (i) series and its beat spectrum. This record presents alternans in association with the ST-T
variation (potentially ischemic) episodes shown in Fig. 6. Fig. 11a shows beat-to-beat alternation of ST-T
morphology during the first ST-T variation episode. Fig. 11b shows the kly(i) series calculated directly
(at left) and its beat spectrum (at right). The clear peak at 0.5 b~! represents the periodic beat-to-beat
ST-T shape variations, visible in the time series as a high-frequency, high-amplitude modulation near
the middle of the 15-minute series. In addition, the beat spectrum reveals the appearance of a 0.25 b~!
peak associated with a period 4 variation in ST-T morphology, also observable in Fig. 11a. There is
another peak at 0.0 b~! and its harmonic at 1.0 b~! that represent a DC component over the entire ki, (i)
series. This comes from the overall kl, (i) variation due to the underlying ischemic evolution. Fig. 11c,d
show another episode of alternans, occurring during the sixth ST-T variation episode of the record (see
Fig. 6¢,d) . In this episode, both period 2 and period 4 alternans are even more marked than in the first
example. Although the alternans may be detected even when using adaptive kl,, (i) estimates (Fig. 1le),
the resulting attenuation of short-term variation makes it clear that the directly estimated kl,,(7) series is

better-suited for this purpose. Figure 11f (left) shows the HR spectrum, obtained using a technique for
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power spectral density estimation of irregularly sampled signals (LAGUNA ET AL., 1998); this spectrum
confirms that the alternans is not an artifact of an underlying HR modulation. Figure 11f (right) shows
the ki, (i) frequency spectrum, estimated using the same technique; the alternans is less apparent in this
frequency spectrum than in the beat spectra, as a result of the change in HR that makes the alternans not
strictly time periodic. The beat spectrum (Fig. 11d, right) of the ki, (i) is thus much more appropriate for
alternans detection than the time spectrum (Fig. 11f, right). Finally figs. 11g,h show this analysis during
a non-ischemic period of the same record. In this case, the beat-to-beat alternans has almost disappeared,
but the period 4 alternans remains apparent. By study of the entire record, we can observe that the period
2 alternans appears in association with the ST-T variation episodes, usually in the later portions of each
episode, but disappears rapidly during recovery. The period 4 alternans is also associated with the ST-T
varying episodes, but persists after recovery. It seems that period 4 alternans is more prominent in the
non-ischemic (Fig. 11h) than during ischemic periods (Fig. 11d). This happens because the total power
is normalized to unity, and then when the period 2 disappears most of the relevant energy is at period 4.

The interpretation should be done in relative terms rather than absolute.

Based on this beatquency spectrum and KLT series we developed an alternans detector (LAGUNA ET AL.,
1996B) that detects alternans representing around 60 'V amplitude variations of the ST-T complex. A
detailed analysis of the European ST-T database has shown that about 5% of ischemic episodes present
alternans associated with them and also more than 50% of the alternans present in the recordings are
associated with the ischemic episodes (LAGUNA ET AL., 1996B). This corroborates previous clinical works
that highly relate the alternans phenomena with the ischemia. This detector can be used as a new index

when analyzing Holter ECG recordings to prevent ventricular arrythmias.

4 Discousion and Conclusions

In this work we have presented a KLT technique for studying the repolarization period of the heart
throughout the ST-T complex of the ECG signal. We have developed a KLT training set of ST-T complexes,
containing a broad range of morphologies, to obtain the KLT basis vectors. We have shown that this
representation permits about 90% of the signal energy to be represented by the first 4 kl,, (i) coefficients.
We have shown that heart rate correction of the ST-T complex using Bazett’s formula improves the
performance of the KLT, whereas neither linear high-pass nor linear bandpass filtering has any beneficial
effect. The KLT has been used to detect ST-T shape variations, with results demonstrating its sensitivity
for detecting ST variations (potentially related to ischemic events). We have described an adaptive filter,
based on the adaptive linear combiner with the LMS algorithm, for improving the signal-to-noise ratio of
a time series of KLT coefficients. The adaptive estimation system delivers an improvement of about 10

dB for a practical choice of parameters for monitoring ischemic ST-T changes. The direct estimates of the
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KLT coefficient time series, and beat spectra derived from them, have been shown to be well-suited for

study of ST-T alternans.

In demonstrating the application of these techniques to analysis of the entire European ST-T Database,
we have shown that about 20% of the records reveal a quasi-periodic pattern of ischemic ST-T episodes,
and another 20% exhibit repetitive but not clearly periodic patterns of ST-T change episodes. These
observations are drawn from information coming from the entire ST-T complex; it would be difficult if
not impossible to reach similar conclusions with confidence using classical differential measurements of
ventricular repolarization such as measurements of ST level or QT interval. The salvo patterns of ischemia
suggest an oscillatory or periodic instability of the coronary blood supply, perhaps due to cyclic vasospasm.
More study of the phenomenon is warranted, since the temporal patterns of ischemia may guide therapeutic
interventions. Preliminary results on automatic ischemia detection using 4 kl coefficents give a sensitivity of
81% and a positive predictivity of 80% at the European ST-T database. Finally, we have observed alternans
of periods 2 and 4 in association with ischemic episodes, with different responses to recovery. Period 4
alternans and the association of alternans with ST-T changes (ischemia) have not been previously reported;
the techniques we describe make the study of these phenomena possible. However a complementary analysis
of the respiration will be required to establish if the period 4 alternans are a results of the respiration rate
coupled with HR or a intrinsic period 4 alternans. At complete analysis at the European ST-T database

gives that 5% of the ischemic episodes present period 2 alternans associated with them.

The KLT technique can be used for long-term tracking of ST-T variations, and may open the door for

developing improved automatic detectors of transient ST-T changes.
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kl and qt plots for record e0103 of the European ST-T Database. Panel (a) shows the heart
rate (left) and its power spectrum density (right) estimated with the Lomb spectrum[32] (only
frequencies up to the inverse mean heart period are meaningful), (b) presents the klo time
series estimated with the adaptive filter for lead V/ (left) and lead MLIII (right), (c¢) shows
the qt series for both leads estimate as the mean after rejecting the mazimum and minimum

values in five beat sets. (d) show the Bazett’s corrected qt series. . . . . . . ... ... ...

kl, (i) and qt(i) plots for record e0129 of the European ST-T Database. Panel (a) shows the
heart rate (left) and its power spectrum density (right) estimated with the Lomb spectrum/[32]
(only frequencies up to the inverse mean heart period are meaningful), (b) shows the kly(i)
time series estimated with the adaptive filter for lead MLIII (left) and lead V3 (right), (c)
shows the qt(i) series for both leads estimated as the mean after rejecting the mazimum and

minimum values in five beat sets. (d) show the Bazett’s corrected qt(i) series. . . . . ...

kl, (i) and st(i) plots for record e0129 of the European ST-T Database. Panel (a) shows the
Elo(i) time series estimated with the adaptive filter for lead MLIII (left) and lead V3 (right),

(b) presents the st(i) series for both leads estimated as described in the text. . . . . . ...

kl, (i) and st(i) plots for record e0103 of the European ST-T Database. Panel (a) shows the
klo(i) time series estimated with the adaptive filter for lead V4 (left) and lead MLIII (right),

(b) presents the st(i) series for both leads estimated as described in the text. . . . . . ...

Alternans in record e0105 of the European ST-T Database. Panel (a) illustrates the ECG
during the first ischemic ST-T episode; (b) shows the klo(i) time series during a 15-minute
interval including the ischemic episode, and the corresponding beat spectrum. The beat
spectrum exhibits a clear peak corresponding to period 2 alternans (at 0.5 b='), and also
shows period 4 alternans (at 0.25 b=1). Panel (c) shows an excerpt of the ECG during
another ischemic episode; (d) shows the corresponding kly(i) time series and beat spectrum,
and (e) shows the same data, derived using adaptive estimation. The adaptive estimate
attenuates the beat-to-beat variations; it is better suited for study of longer-term variations.
Panel (f) shows the HR power spectrum and the klo(i) frequency spectrum for the same
interval (see text). Panels (g) and (h) show an excerpt of ECG, a klo(i) time series, and
the corresponding beat spectrum during a non ischemic period in the same record, where the

period 2 alternans has disappeared, but a period 4 alternans remains. . . . . . . . . . . ...
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Figure 1: Cumulative eigenvalue energy CEE(n) = 100", _, /\k/Z/]c\:ol Ax as a function of the sorted
eigenvalue order n. N = 150 is the total number of eigenvalues \. Light bars show results obtained using
pattern vector set 1 (baselines corrected using cubic splines), and dark bars show results obtained using set

2 (with correction for heart rate).
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KLT ST-T complex basis
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Figure 2: KLT basis functions. The solid lines show functions derived from set 1 (without HR correction),
while the dashed lines show functions derived from set 2 (with HR correction). The units of vertical axis

are normalized (not mV) since the basis need to be orthonormal, and then they have been multiplied by a

normalizing factor.
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KL Reconstruction of ST-T complex
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Figure 3: Reconstruction of three ST-T complexzes with the KLT. Panel (a) shows an ST-T complex with
a U wave and its reconstruction based on 3, 5 and 8 KLT coefficients, together with the cumulative energy
(CE(n)) as a function of the ki, (i) order (n), plotted at the right. In panel (a), the uncorrected (set 1)
KLT has been used; panel (b) shows the same ST-T complex, reconstructed using the HR-corrected (set 2)
KLT. Panels (¢) and (d), and panels (e) and (f), show similar reconstructions for two other two ST-T

complexes; see the text for descriptions.
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Figure 5: Exzample of the time series of the first kl coefficient, kly, from a patient with large ST-T variations
during PTCA. Four sample beats are shown at the top of the figure corresponding to the times indicated by
the arrows on the kly(i) series. Note how during the balloon inflation period the ST-T complex is positive,
corresponding to positive kly values. After deflation of the balloon, the ST-T complex inverts its polarity

and oscillates in magnitude. This is reflected in the klg time series as a negative oscillating value.
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KL series
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Figure 6: kl,,(i) plots for three records of the European ST-T Database. Panels (a) and (b) present kly(i)
time series of record e0103 estimated directly from the inner product (a), and with the adaptive estimate
(b); those on the left correspond to the first lead (V4), and those on the right to the second lead (MLIII).
Panels (¢) and (d) show the klo(i) time series for record e0105 on the left, and the kly(i) time series for
the same lead (MLIII) on the right. Panels (e) and (f) illustrate the uncorrected klo(i) time series for
record e(0113 on the left, and the corresponding HR-corrected klo(i) time series on the right for the same
lead (MLIII). The temporal azes reflect the time instant at which the beat, corresponding to the kl value,

appears.
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KL-QT series e0103
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Figure 7: kl and gt plots for record e0103 of the European ST-T Database. Panel (a) shows the heart rate
(left) and its power spectrum density (right) estimated with the Lomb spectrum/[32] (only frequencies up to
the inverse mean heart period are meaningful), (b) presents the kly time series estimated with the adaptive
filter for lead V4 (left) and lead MLIII (right), (¢) shows the qt series for both leads estimate as the mean

after rejecting the mazimum and minimum values in five beat sets. (d) show the Bazett’s corrected qt series.
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KL-QT series e0129
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Figure 8: ki, (i) and qt(i) plots for record e0129 of the European ST-T Database. Panel (a) shows the heart
rate (left) and its power spectrum density (right) estimated with the Lomb spectrum[32] (only frequencies
up to the inverse mean heart period are meaningful), (b) shows the kly(i) time series estimated with the
adaptive filter for lead MLIII (left) and lead V3 (right), (c) shows the qt(i) series for both leads estimated
as the mean after rejecting the mazimum and minimum values in five beat sets. (d) show the Bazett’s

corrected qt(i) series.
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KL-ST seriese0129

~ Adap.Kolead MLII
g 6
e 4
:,
of . . T T
0 % minutes

ST deviations lead MLIII

500

250

uv

-250 T

00

minutes

Arbitrary units

uv

. Adap. klo lead V3

i %)
s I ® Iminuta 160
. ST deviationslead V3

: b)
- @ 'minutes o

Figure 9: kl,,(i) and st(i) plots for record e0129 of the European ST-T Database. Panel (a) shows the

klo(i) time series estimated with the adaptive filter for lead MLIII (left) and lead V3 (right), (b) presents

the st(i) series for both leads estimated as described in the text.
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Figure 10: Kl (i) and st(i) plots for record e0103 of the European ST-T Database. Panel (a) shows the

klo(i) time series estimated with the adaptive filter for lead V4 (left) and lead MLIII (right), (b) presents

the st(i) series for both leads estimated as described in the text.
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Figure 11: Alternans in record e0105 of the European ST-T Database. Panel (a) illustrates the ECG
during the first ischemic ST-T episode; (b) shows the klo(i) time series during a 15-minute interval
including the ischemic episode, and the corresponding beat spectrum. The beat spectrum exhibits a clear peak
corresponding to period 2 alternans (at 0.5 b=1), and also shows period 4 alternans (at 0.25 b='). Panel
(¢) shows an excerpt of the ECG during another ischemic episode; (d) shows the corresponding kly(i) time
series and beat spectrum, and (e) shows the same data, derived using adaptive estimation. The adaptive
estimate attenuates the beat-to-beat variations; it is better suited for study of longer-term variations. Panel
(f) shows the HR power spectrum and the kly(i) frequency spectrum for the same interval (see text). Panels
(9) and (h) show an excerpt of ECG, a kly(i) time series, and the corresponding beat spectrum during a non

ischemic period in the same record, where the period 2 alternans has disappeared, but a period 4 alternans



