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ABSTRACT

In this paper a new algorithm to compute an additive synthesis
model of a signal is presented. An analysis based on the Con-
tinuous Wavelet Transform (CWT) has been used to extract the
time-varying amplitudes and phases of the model. A coarse to fine
analysis increases the algorithm efficiency. The computation of
the transient analysis is performed using the same algorithm devel-
oped for the sinusoidal analysis, setting the proper parameters. A
sinusoidal plus transient schema is obtained. Typical sound trans-
formations have been implemented to validate the obtained results.

1. INTRODUCTION

Additive Synthesisis a set of sound synthesis techniques based on
the summation of elementary waveforms, called partials, to obtain
more complex waveforms. Usually the process of partial extrac-
tion is based on the Short-Time Fourier Transform (STFT). The
STFT maps the signal into a two-dimensional function of time and
frequency. However, the size of the analysis window establishes a
compromise in the resolution achievable in both domains [1].

The basic Spectral Modeling Synthesis (SMS) technique [2]
models the sounds as the sum of sinusoids plus a residual. The
sinusoidal components are extracted from the original signal by
means of the Sort-Time Fourier Transform (STFT).

Wavelet Analysis[3] [4] can be considered as a windowing
technique with variable-sized regions, which allows the use of long
time intervals where more precise low frequency information is
required, and shorter regions where the interest relies on high fre-
quency information.

Mathematically, the Fourier Transform represents the process
of the Fourier analysis:

f̂(ω) =

Z +∞

−∞
f(t)e−jωtdt (1)

Therefore, the mathematical basis of the Fourier Transform
are sine waves (the complex exponential can be broken down into
real and imaginary sinusoidal components) of infinite duration.

Similarly, the Continuous Wavelet Transform (CWT) is de-
fined as:

Wf (a, b) =

Z +∞

−∞
f(t)ψ∗a,b(t)dt (2)

where * is the complex conjugate andψa,b(t) is the mother wavelet
scaled by a factora and dilated by a factorb:

ψa,b(t) =
1√
a
ψ

„
t− b

a

«
(3)

Hence, while the Fourier Transform consists of breaking up a
signal into sine waves of various frequencies, the CWT consists of
breaking up a signal into scaled and shifted versions of the wavelet
basisψa,b(t).

If we define

ψa(x) =
1√
a
ψ

“x
a

”
(4)

equation 2 can be viewed as the inner product of the original signal
f(t) with the basisψa(t− b):

Wf (a, b) = 〈f, ψa(t− b)〉 (5)

or, equivalently, the wavelet transform is the convolution of the
functionf with the filter whose impulse response isψ̃a(x)

Wf (a, b) = f ∗ ψ̃a(b) (6)

where

ψ̃a(x) = ψa(−x) (7)

The filter frequency response of the dilated mother wavelet
ψa(x) is:

ψ̂a(ω) =
√
aψ̂(aω) (8)

Taking the Fourier Transform on both sides of equation 6 the
wavelet transform can be viewed as the filtering of the signal with
a bandpass filter whose frequency response isψ̂a(ω).

The real and imaginary parts of the wavelet transform can be
obtained if a complex wavelet is used:

Rf (a, b) = < (Wf (a, b))

If (a, b) = = (Wf (a, b))
(9)

Then, the modulus and phase of the complex wavelet trans-
form are:

Mf (a, b) =
q
R2

f (a, b) + I2
f (a, b) (10)

Ψf (a, b) = arctan

„
If (a, b)

Rf (a, b)

«
(11)

Equations 10 and 11 are the output of the Complex Continuous
Wavelet Transform that is employed to perform the sound analysis
in this work.

This paper is divided as follows. In section 2 we present the
definition of the wavelet and the analysis parameters we use in
the processing stage. In section 3 the sinusoidal analysis and ad-
ditive resynthesis are presented. The transient analysis and some
results are presented in section 4. In section 5 some typical trans-
formations that can be implemented with the proposed model are
described. Finally, the main conclusions are presented in section
6.
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2. WAVELET DEFINITION

As proposed by Kronland-Martinet, Morlet and Grossmann [5] the
analyzing wavelet we are going to use in this work is the complex
generalization of the Morlet wavelet, given by the expression:

ψ(t) = C′e−
t2
2

“
ejω0t − e−

ω0
2

”
(12)

This function requires small corrections to ensure that the for-
mal conditions for an analyzing wavelet is satisfied [5]. How-
ever, ifω0 is big enough for that the Fourier transform of Morlet’s
waveletψ̂(ω) vanishes ifω < 0, these corrections are numerically
negligible. In practice takingω0 > 5 is enough. In this case the
Fourier transform of the complex Morlet’s wavelet is:

ψ̂(ω) = Ce−
(ω−ω0)2

2 (13)

C′ andC are normalization constants in the time and fre-
quency domain, respectively.

As it will be seen later, we will need to control the frequency
resolution of the analysis. A parameterk, which determines the
bandwidth of the mother wavelet has been included. So, the final
expression of our wavelet in the frequency domain is:

ψ̂(ω) = Ce−
(ω−ω0)2

2k (14)

As proposed in [3] and [4] a dyadic set of scale factors is em-
ployed. This frequency division provides a logarithmic-resolution
frequency axis. In our case, we want to be able to analyze each
octave in a variable number of divisionsD. The set of discrete
scales is obtained by:

sj = smin2
j
D , j = 1, . . . , J (15)

If D = 1 the spectrum is divided intoJ octaves. The mini-
mum scalesmin is related to the maximum frequency that could
be found in the analysis,fmax, andfmax is related to the sampling
ratefs by the Nyquist criterion,fmax = fs/2.

Following equations 8 and 14, and changing the continuous
scale factora by the discrete ones, the scaled version of Morlet’s
wavelet can be expressed as:

ψ̂(ω) = Cse
− (sω−ω0)2

2k (16)

From equation 16 it can be seen that the center frequency of
the bandpass filter at scaless, located at the maximum of the ex-
ponential is:

ωc =
ω0

s
(17)

Finally, we have to fit the filters bandwidth associated with the
analyzing wavelet. These filters should be wide enough to cover
the whole frequency axis. In figure 1, it is shown that this property
is not properly carried out whatever the choice of the number of
divisions by scaleD and the resolution parameterk we give. In
figure 1 we have chosen, arbitrarily, one division per scale,D = 1,
and a resolution factork = 22. When the filters are narrowed
increasingk, it can be seen that some frequencies are not analyzed
by the filter bank structure. So, divisions per scale and resolution
are not totally independent.

To avoid this problem, a relationship between the number of
divisions per scaleD and the filters widthk has been developed. If
Q is defined asQ = ωc/BW , where BW is the filter bandwidth,
it can be shown that:

Figure 1:Morlet’s wavelet filter bank with D=1 and k=22. Some
frequencies are not covered by the filter bank structure.

k =
1

ln(2)

„
ω0

2Q

«2

(18)

It is possible to obtain the expression relatingQ and the filters
center frequencies (or the corresponding scale) supposing that the
spectrum is covered inside the -3 dB points of the bandpass filters.
Then, using equation 17, we have:

Q =
ωc,j+1

ωc,j+1 − ωc,j
=
sj+1 − sj

sj
(19)

whereωc,j is the center frequency of the bandpass filter at scalej
andsj is the j-th scale (see equation 15).

Equation 19 can be expressed in the particular case ofj =
J . A narrowing parameterq has been included. Then,Q can be
expressed by:

Q = q
sJ − sJ−1

sJ−1
(20)

Once we have chosen the number of divisions per scaleD and
the resolution parameterq, we can compute automaticallyQ and
k using equation 20 and 18, respectively. In figure 2 we can see
an example comparing the results of the filter banks obtained with
D = 1 (figure 2(a)) andD = 2 (figure 2(b)), andq = 1 in both
cases.

Using the expressions presented in this section we have all
the necessary mathematical tools to afford the sinusoidal analysis
presented in next sections.

3. SINUSOIDAL ANALYSIS AND RESYNTHESIS

The block diagram of the sinusoidal analysis algorithm presented
in this paper is shown in figure 3. It can be described in four steps.

1. To compute the continuos wavelet transform of the input
sound. The output of the transform is the CWT modulus
and phase as described in equations 10 and 11.

2. To compute the scalegram. The scalegram is the sum over
the time dimension of the modulus of the CWT coefficients
for each scale.

S(a) =

Z +∞

−∞
Wf (a, b)db (21)

This is a representation of the energy contained in each
scale of the analysis or, equivalently, each frequency band.
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(a)

(b)

Figure 2: (a) Filter bank structure of Morlet’s wavelet with one
division per scale and a resolution parameter q=1. The obtained
Q is 2. (b) Filter bank structure of Morlet’s wavelet with two divi-
sions per scale and a resolution parameter q=2. The obtained Q
is 3.41.

To obtain a sinusoidal representation of the input signal we
need to search the maximum energy spectral bands from the
information given by the CWT modulus. A thresholding
process, controlled by a user parameter, give us the scales
where the most of the energy of the input signal is concen-
trated. This first and second steps are made at low resolu-
tion (for instance,D = 1, q = 1). This is a coarse analysis
of the signal. In figure 4 we can see a plot of a recorded
guitar note (figure 4(a)) and the output of the coarse analy-
sis: scalegram (figure 4(b)) and modulus and phase of the
CWT (figures 4(d) and 4(f), respectively).

3. To perform a finer analysis over the range of scales that con-
tain some energy. We compute the CWT and the scalegram
only at the marked scales. This computation is made over
the input sound with high-resolution parameters (for exam-
ple, D = 8 and q = 1). Figure 4 shows the scalegram
(figure 4(c)), the modulus of the CWT (figure 4(e)) and the
phase of the CWT (figure 4(g)) computed at high resolution
over the signal in figure 4(a).

4. To search the maximum peaks in the scalegram inside the
scale range that allow us to locate the constituent partials of

Figure 3:Sinusoidal analysis algorithm block diagram.

the signal. Its temporal envelopes and the time-dependent
phase describe the sound partials. The partials temporal
envelopes are described in the modulus of the CWT at the
scales corresponding to the obtained peaks. The partials en-
velopes obtained from the recorded guitar note are shown in
figure 5(a). The unwrapped argument or phase of these co-
efficients provides the instantaneous phase of the partials
and are presented in figure 5(b). The first derivative of
the instantaneous phase determines the instantaneous fre-
quency of the partials. With this analysis algorithm we have
obtained a sinusoidal model of our signal.

At the end of the process, having the envelopes and phases of
the main partials, the resynthesis is performed using the additive
synthesis expression:

ŝs(t) =

KX
k=1

ak(t) cosφk(t) (22)

whereak(t) is the time depending envelope andφk(t) is the in-
stantaneous phase of the k-th partial given by the continuous wavelet
analysis.

The coarse-to-fine analysis presented here avoids the heavy
computation of a fine analysis in the whole frequency range. In our
approach, a full frequency analysis is only made at low resolution,
so the computational effort is diminished. We are only dealing
with sounds or phrases of one instrument. Musical programs that
cover all the frequency range need a different processing approach
and it is out of the scope of this paper.

4. TRANSIENT ANALYSIS AND RESULTS

As in the SMS framework [2] we are going to consider the resid-
ual signal. The residual signal is the difference between the orig-
inal signal and the synthesized sinusoidal one. This residual con-
tains information about transient and noise. We are going to model
the residual by means of a conceptually identical schema that the
one we have used in the sinusoidal analysis. The whole algorithm
block diagram is presented in figure 6. We can observe that the dif-
ference between the synthesized sinusoidal and the original signal
is processed with the same algorithm presented before. The algo-
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(a)

(b) (c)

(d) (e)

(f) (g)

Figure 4: (a) Recorded guitar note. (b) Scalegram at coarse res-
olution (D=1, q=1). (c) Scalegram at fine resolution (D=8, q=1).
(d) Modulus of the CWT: coarse analysis. (e) Modulus of the CWT:
fine analysis. (f) Phase of the CWT: coarse analysis CWT. (g)
Phase of the CWT: fine analysis.

rithm output are the envelopes and phases of the sinusoidal and the
transient partials.

The low scales of the CWT contain a very fine estimation of
the rapid variations of the envelopes and phases of the partials.The

(a)

(b)

Figure 5:(a) Partial envelopes obtained form peak detection on the
fine analysis scalegram. (b) Unwrapped partial phases obtained
from peak detection on the fine analysis scalegram.

Figure 6:Sinusoidal plus transient algorithm block diagram.

transient model is performed with wide-band filters. The algorithm
parameters have been tuned selecting a few divisions per octaveD

DAFX-4



Proc. of the 6th Int. Conference on Digital Audio Effects (DAFx-03), London, UK, September 8-11, 2003

in equation 15, adjustingq (equation 20) to a value lesser to 1 (for
example,q = 0.5).

In this way, the residual is modeled by flexible partials en-
velopes and phases as in the sinusoidal analysis. The transient
signal is synthesized by:

ŝt(t) =

LX
l=1

al(t) cosφl(t) (23)

In figure 7 we can see the envelopes and phases of the analyzed
residual of signal in figure 4(a).

(a)

(b)

Figure 7:(a) Partial envelopes of transient signal. (b) Unwrapped
partial phases of transient signal.

Finally, the synthetic signal is obtained by adding the synthe-
sized sinusoidal and the synthesized transient:

ŝ(t) = ŝs(t) + ŝt(t) (24)

As a result we can see in figure 8 the recorded guitar note
(figure 8(a)), the sinusoidal synthesis (figure 8(b)), the transient

synthesis (figure 8(c)), the synthetic final signal (figure 8(d)) and
the final total error (figure 8(e)). We can see the high quality of the
reconstructed sound.

(a)

(b) (c)

(d) (e)

Figure 8:(a) Original recorded guitar note. (b) Sinusoidal recon-
struction. (c) Transient reconstruction. (d) Synthesized signal. (e)
Final total error.

5. TRANSFORMATIONS

At this point we have obtained a model that provides a satisfactory
resynthesis of the original sound. Due to additive synthesis char-
acteristics of the model (like in a classical phase vocoder [6]) we
can easily implement the modifications of the model parameters
that lead to some transformations musically interesting.

First, the note pitch can be estimated. The decomposition of
the sound into constituent partials allows the determination of the
fundamental frequency and thus, the pitch estimation.

5.1. Pitch shifting

The object of pitch-shifting is to alter the frequency content of
a signal without affecting its time evolution [7]. We can define
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an arbitrary pitch-scale time-varying functionα(t) assumed to be
slowly varying function of time. The resulting signal is obtained
modifying the phases with the pitch-scale function while maintain-
ing the same duration and amplitude of each partial. The pitch-
shifted signal is expressed as:

s′(t) =

NX
k=1

ak(t) cos (α(t)φk(t)) (25)

For example, a vibrato execution could be implemented multi-
plying the instantaneous phases by a low-frequency sine function.

5.2. Time stretching

Time stretching consist on the modification of the time evolution of
a signal without affecting its spectral content [7]. It should be de-
fined a time mapping functiont→ t′ = T (t). This mapping func-
tion is assumed to be a slowly varying function of time. We can
define the slope of the time mapping functionβ(t) = dT (t)/dt,
so the time stretched signal can be expressed as:

s′(t′) =

NX
k=1

ak(t′) cos
`
β(t)φk(t′)

´
t′ = T (t)

(26)

The amplitudes and phases of the partials can be stretched, but
the phases should be multiplied by a correcting termβ(t) in order
to maintain the pitch unaltered.

5.3. Cross synthesis and morphing

A typical transformation of a classical phase vocoder analysis is
cross synthesis. Hybrid sounds taking the dynamic characteristics
of a sound combined with the tonal attributes of another sound can
be easily generated.

Finally, we can generate morphing or transition between two
different sounds. Once the model parameters of both sounds have
been associated, as in the generation of hybrid sounds, the en-
velopes and phases of the initial sound can be gradually modified
until they are equal to the parameters of the final sound.

6. CONCLUSIONS

In this article we have presented the basic concepts involved in ob-
taining a musically meaningful signal representation based on the
CWT. We have also discussed several ways to transform some fea-
tures of the modeled sounds. The quality of the synthesized sounds
is very high, maintaining the perceptual identity of the original
sounds for most of the timbre families.

The main advantage of the developed technique is the very
high flexibility of the model similar to a phase vocoder. Firstly, the
separation of the stationary and transient components of the signal
is performed. Secondly, each of these components is modeled as
the sum of a set of partials, which allows the modification of the
harmonic structure of the sounds. Finally, the dynamic and tonal
features of each partial are isolated by the extraction of its tempo-
ral envelopes and instantaneous phases. This flexibility leads to a
wide range of musically useful transformations.

An interesting refinement in order to improve this work will
be the inclusion of a stochastic analysis to model the noisy back-
ground present in some sounds.
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