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Active Shape Model Segmentation With
Optimal Features

Bram van Ginneken*, Alejandro F. Frangi, Joes J. Staal, Bart M. ter Haar Romeny, and Max A. Viergever

Abstract—An active shape model segmentation scheme is pre-on template matching. Templates incorporate knowledge about
sented that is steered by optimal local features, contrary to normal-  hoth the shape of the object to be segmented and its gray-level

ized first order derivative profiles, as in the original formulation P . .
[Cootes and Taylor, 1995 p1999 and 2001]. A ngonlinediN-cIas- appgarance !n the |mage, and are matched for lnstallnce by cor-
sifier is used, instead of the linear Mahalanobis distance, to find elation or with generalized Hough transform techniques. But

optimal displacements for landmarks. For each of the landmarks template matching, or related techniques, are likely to fail if the
that describe the shape, at each resolution level taken into account pbject and/or background exhibit a large variability in shape or

during the segmentation optimization procedure, a distinct set of - o4y, lave| appearance, as is often the case in real-life images
optimal features is determined. The selection of features is auto- and medical data

matic, using the training images and sequential feature forward . )
and backward selection. The new approach is tested on synthetic Active contours or snakes [4], [5] and wave propagation

data and in four medical segmentation tasks: segmenting the right methods such as level sets [6], have been heralded as a new
and left Iung ﬁeldsbin”a datatéase of 230 (l:lhest fa_diogtrjaphiy and ?%% paradigms for segmentation. It was their ability to deform freely
giiggnf?otrnelvﬁgebrgi#?ng o ;Olrrf’:fl 2252??1 énnaewarfetﬁzz %ro_ instead of rigidly that spurred this enthusiasm. Nevertheless,
duces significantly better results in terms of an overlap error mea- SUch methods have two inherent limitations which make them

sure (p < 0.001 using a paired T-test) than the original active unsuited for many medical segmentation tasks. First, little

shape model scheme. a priori knowledge about the shape to be segmented can be
Index Terms—Active shape models, medical image segmenta-incorporated, except for adjusting certain parameters. Second,
tion, model-based segmentation. the image structure at object boundaries is prescribed by letting

the snakes attract to edges or ridges in the image, or by termi-
nation conditions for propagating waves. In practice, object
boundaries do not necessarily coincide with edges or ridges.
EGMENTATION is one of the key areas in computer vi- Tg gvercome these limitations, researchers experimented with
ion. During the 1970s and 1980s, many researchers agnd-crafted parametric models. An illustrative example is the
proached the segmentation problem boétom-ugashion: em- \york of Yuille et al.[7] where a deformable model of an eye is
phasis was on the analysis and design of filters for the detecti@$hstructed from circles and parabolic patches and a heuristic
of local structures such as edges, ridges, corners and T-juggst function is proposed for the gray-level appearance of the
tions. The structure of an image can be described as a collecqi,qalr&ge inside and on the border of these patches. There are two
of such syntactical elements and their (spatial) relations, agghplems with parametric models. First of all they @eelicated
such descriptions can be used as input for generic segmentagQit is, limited to a single application. Second, there is no proof
schemes. Unfortunately, these segmentations are often not @&t the shape model and cost function proposed by the designer
meaningful. On the other hanthp-downstrategies (also re- of the model are the optimal choice for the given application.
ferred to asnodel-basedr activeapproaches) for segmentation Consequently, there is a need for generic segmentation
were used successfully in highly constrained environments, e §bhemes that can be trained with examples as to acquire a model
in industrial inspection tasks. Often these methods are baggghe shape of the object to be segmented (with its variability)
and the gray-level appearance of the object in the image (with
Manuscript received August 10, 2001; revised May 21, 2002. This work wi§ variability). Such methods are prototype-based which makes
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centered at each landmark that run perpendicular to the object
contour. The cost (or energy) function to be minimized is th
Mahalanobis distance of these first derivative profiles. The fit-

925

TABLE |

ePARAMETERS FORACTIVE SHAPE MODELS (ORIGINAL SCHEME AND NEW
METHOD WITH OPTIMAL FEATURES). VALUES USED IN THE EXPERIMENTS

ARE GIVEN BETWEEN PARENTHESES

ting procedure is an alternation of landmark displacements and

model fitting in a multiresolution framework.

Several comparable approaches are found in the literat.
Shapes and objects have been modeled by landmarks, finite
ement methods, Fourier descriptors and by expansion in spt
ical harmonics (especially for surfaces in three dimensio
[11], [12]). Jainet al. [13] have presented a Bayesian frame
work in which templates are deformed and more probable ¢
formations are more likely to occur. They use a coarse-to-fii
search algorithm. Ronfard [14] has used statistics of obje
and background appearance in the energy function of a sne
Brejl and Sonka [15] have described a scheme similar to ASI
but with a nonlinear shape and appearance model that is
timized with an energy function after an exhaustive search
find a suitable initialization. Pizest al.[16] describe an object
model that consists of linked primitives which can be fitte:
to images using methods similar to ASMs. Cootes and Tayl
have explored active appearance models (AAMs) [2], [17], [1!
as an alternative to ASMs. In AAMs, a combined principe
component analysis of the landmarks and pixel values insi
the object is made which allows one to generate plausible
stances of both geometry and texture. The iterative steps in
optimization of the segmentation are steered by the differer
between the true pixel values and the modeled pixel valu
within the object. Sclaroff and co-workers [19], [20] have pra
posed a comparable method in which the object is modeled
a finite-element model.

While there are differences, the general layout of the:
schemes is similar in that there are: 1) a shape model tl
ensures that the segmentation can only produce plausi
shapes; 2) a gray-level appearance model that ensures tha
segmentation places the object at a location where the im:
structure around the border or within the object is similar t
what is expected from the training images; and 3) an algorith
for fitting the model by minimizing some cost function. Usu:
ally, the algorithm is implemented in a multiresolution fashio
to provide long-range capture capabilities.

General
S number of training images

Shape model

n number of landmark points

alignmenttrue or false, whether or not to align the
shapes before computing the shape model

t number of modes in the shape model
(controlled by f,)

f’l}
part of variance to be explained by the
shape model, determines number of modes
(0.98 with alignment, 0.995 without)

m bounds on eigenvalues \; (2.0)

Appearance model

k number of points in profile on either side
of the landmark point, giving profiles of
length 2k 4+ 1 (2)

Lonax number of resolution levels for appearance
model and search algorithm (4)

Nyrid (optimal features method) size of
Ngria X Ngriq grid of points from which
features are sampled in training images (5)

frnaz (optimal features method) maximum number
of features to select (10)

knn (optimal features method) number of

neighbors used in kNN classifier during

searching and feature selection (5)

Search algorithm

N number of new positions to evaluate during
each iteration on either side of current
landmark position; total number of
positions evaluated is 2n, + 1 (4)

Noax iterations per resolution level (10)

ASMs have been used for several segmentation tasks in mecjT'his paper is organized as follows. In Section I, there is a

ical images [21]-[27]. Our contribution in this paper ConSiS,tétep-by-step description of the original ASM scheme. In Sec-
of a new type of appearance model for the gray-level Vargan 111, some observations regarding ASMs are made and pos-

tions around the border of the object. Instead of using the nql

malized first derivative profile, we consider a general set
local image structure descriptokséz.the moments of local his-
tograms extracted from filtered versions of the images usin

ble modifications to the method are discussed. In Section IV,
e new method is explained. In Section V, the experiments on

synthetic images, chest radiographs, and brain MR data with

%8th the original ASM scheme and the new method with op-
filter bank of Gaussian derivatives. Subsequently a statisti(i d B

al features are described and the results are presented in

analysis is performed to learn which descriptors are the most BBction VI. Discussion and conclusions are given in the Sec-
formative at each resolution, and at each landmark. This analyﬁ' ViI

amounts to feature selection withkanearest neighborg: NN)

classifier and sequential feature forward and backward selec-

Il. ACTIVE SHAPE MODELS

tion. ThekNN classifier with the selected set of features is used
to compute the displacements of landmarks during optimiza-This section briefly reviews the ASM segmentation scheme.
tion, instead of the Mahalanobis distance for the normalized filste follow the description and notation of [2]. The parameters of
derivative profile. In this paper, we refer to this new segmenttie scheme are listed in Table I. In principle, the scheme can be
tion method as “ASMs with optimal features,” where the terrased innD, but in this paper we give a two-dimensional (2-D)
optimal must be understood as described above. formulation.
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A. Shape Model within a specific range of sizes, positions and orientations, such
An object is described by points, referred to as landmark® Model might lead to higher segmentation performance. In an

points. The landmark points are (manually) determined inUpaligned shape model, the first few modes of variation are usu-
set of s training images. From these collections of landmar@!ly a@ssociated with variations in size and position and the vari-

points, a point distribution model [28] is constructed as follow&tion seen in the first few modes had the shape model been con-
The landmark point6e+, 1), ... (n, y») are stacked in Sh(,ipestructed from aligned shapes, is usually shifted toward modes
vectors PO e with lower eigenvalues. Therefore, the paramgteshould be

larger than in the case of aligned shapes in which no variation
X = (T1, Y1, -y Ty Yn) L. (1) is present with respect to size and position. In our experience,
building an unaligned shape model can improve segmentation
Principal component analysis (PCA) is applied to the shaperformance provided that enough training data is available.
vectorsx by computing the mean shape
B. Gray-Level Appearance Model

X = 1 Z X; @) The gray-level appearance model that describes the typical
i=1 image structure around each landmark is obtained from pixel
profiles, sampled (using linear interpolation) around each land-
mark, perpendicular to the contour.
T Note that this requires a notion of connectivity between the
) jandmark points from which the perpendicular direction can be
computed. The direction perpendicular to a landmatk v.,)
and the eigensystem of the covariance matrix. The eigenvectisrsomputed by rotating the vector that runs from 1, y,—1)
corresponding to the largest eigenvalues; are retained in a t0 (zn41, Yn+1) Over 90. In the applications presented in this
matrix® = (¢1|d2]| - - - |¢¢). A shape can now be approximatedaper, all objects are closed contours, so for the first landmark,
by the last landmark and the second landmark are the points from
which a perpendicular direction is computed; for the last land-
x~X+ ®b (4)  mark, the second to last landmark and the first landmark are

the covariance

; - used.
whereb is a vector oft elements containing the model param- On either sidek pixels are sampled using a fixed step size,

eters, computed by which gives profiles of lengtk + 1. Cootes and Taylor [2]
b=2aT(x-%). (5) propose to use the normalized first derivatives of these profiles
to build the gray-level appearance model. The derivatives are
When fitting the model to a set of points, the valuedbafre computed using finite differences between thie- 1)th and
constrained to lie within the rangem./X;, wherem usually the(j + 1)th point. The normalization is such that the sum of
has a value between two and three. absolute values of the elements in the derivative profile is 1.
The numbert of eigenvalues to retain is chosen so as to Denoting these normalized derivative profilegas. . ., g,
explain a certain proportiofi, of the variance in the training the mean profilgg and the covariance matrt, are computed
shapes, usually ranging from 90% to 99.5%. The desiréer €ach landmark. This allows for the computation of the Ma-

number of modes is given by the smalle$or which halanobis distance [30] between a new pradjl@nd the profile
) o model
PRSP (6) flgi) = (g —8)S;" (8 —8)- 7
i=1 i=1

) ) . Minimizing f(g;) is equivalent to maximizing the probability
Before P_CA IS aF’P"ed tothe shapes, the shapes cqn_bg al'gﬂﬁﬂ g; originates from a multidimensional Gaussian distribu-
by translating, rotating and scaling them so as to minimize t'ﬂBn

sum of squared distances between the landmark points. An iter-
ative scheme known as Procrustes analysis [29] is used to algnMultiresolution Framework
the shapes. This transformation and its inverse are also applie

L ; . C}hese profile models, given tgyandS,, are constructed for
before and after the projection of the shape model in (5). Thlsultiple resolutions. The number of resolutions is denoted by

alignment procedure makes the shape model independent of jhie The finest resolution uses the original image and a step

size, position, and orientation of the objects. Alignment can alsgd **" . : , :
) . X —.._Size of one pixel when sampling the profiles. The next resolution

help to better fulfill the requirement that the family of point dis= . i
is the image observed at scate= 1 and a step size of two

tributions is Gaussian, which is an underlying assumption of the als. Subseauent levels are constructed by doubling the image
PCA model. To this end, a projection into tangent space of edlRes: d y 9 9

) . Scale and the step size.

shape may be useful; see [2] for details. ) . .
; . The doubling of the step size means that landmarks are dis-
However, the alignment can also be omitted. In that case, the . . )
: . blaced over larger distances at coarser resolutions. The blurring

result is a shape model that can generate only shapes with_a : . L
. . . . : ; . .causes small structures to disappear. The result is that the fitting

size, position, and orientation that is consistent with the supplie

examples. If, for a certain application, the objects occur onlyNote that we do not subsample the images, as proposed by Cootes and Taylor.
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at coarse resolution allows the model to find a good approxnd thus leads to a “smoother” set of displacements. This can
mate location based on global images structures, while the ldtad to quicker convergence [25].
stages at fine resolutions allow for refinement of the segmenta-e Confidence in Landmark Displacemenifsinformation is

tion result. available about the confidence of the proposed landmark dis-
placement, weighted fitting of the shape model can be used, as
D. Optimization Algorithm explained in [21].

Shapes are fitted in an iterative manner, starting from the® Initialization. Because of the multiresolution implementa-

mean shape. Each landmark is moved along the direction pté(?n’ the initial position of the object (the mean shape, i.e., the

pendicular to the contour te, positions on either side evaly-mean location of each landmark) does not have to be very pre-
ating a total 0B, + 1 positiosns The step size is agafh,ﬁi—l) cise, as long as the distance between true and initial landmark

\ : ; itions i ithi (Nmax—=1) pj i i

pixels for theith resolution level. The landmark is put at thdositions 1s well W'th'nk"52_ . _p|xel_s. But if the object :

position with the lowest Mahalanobis distance. After movin an be 'OC?‘ted any_where_ W'.th'.n th_e Inputimage, an _(exhgusnve)

all landmarks, the shape model is fitted to the displaced poin garch to find a suitable initialization, e.g., as described in [15],

yielding an updated segmentation. This is repeafgd, times can be necessary. . . Lo

at each resolution. in a coarse-to-fine fashion. e Optimization Algorithm Standard nonlinear optimization
There is no guarantee that the procedure will converge. It"’fgg

orithms, such as hill climbing, Levenberg—Marquardt, or ge-
our experience, however, that in practice the scheme :':1Imostr3§fIIC algorithms can be used to find the optimal model param-
ways converges. The gray-level model fitimproves steadily al

I%ersb instead of using the algorithm of alternating displace-
reaches a constant level within a few iterations at each resdill

ent of landmarks and model fitting. A minimization criterion
tion level. Therefore, we, conservatively, take a large value (1 uld be the sum of the Mahalanobis distances, possibly com-
for Niax.2

pfemented by a regularization term constructed from the shape
model parameters. Note that a multiresolution approach can still
be used with standard nonlinear optimization methods. Alterna-
tively, a snake algorithm can be used in which the shape model
There are several ways to modify, refine and improve ASMprovides an internal energy term and the gray-level appearance
In this section, we mention some possibilities. model fit is used as external energy term.
¢ Bounds for the Shape Modélhe shape model is fitted by  This list is not complete, but it is beyond the scope of this ar-
projecting a shape in tt#-dimensional spaceithe number of ticle to present a complete discussion of the strengths and weak-
landmarks, the factor two is because we consider 2-D imagegsses of the ASM segmentation method. The issues described
upon the subspace spanned by#lergest eigenvectors and byabove are not considered in this work. Instead, we focus on the
truncating the model parametédsso that the point is inside the following points:
box bounded bytm+/A;. Thus there is no smooth transition; e Normalized First Derivative ProfilesThe original version
all shapes in the box are allowed, outside the box no shape isalthe gray-level appearance model is always based on normal-
lowed. Clearly this can be refined in many ways, using a penalized first derivative profiles. There is ragpriori reason why this
term or an ellipsoid instead of a box, and so on [2], [16]. should be an optimal choice. In this paper, we propose an alter-
e Nonlinear Shape ModelsThe shape model uses PCAnative.
and, therefore, assumes that the distribution of shagashe e Mahalanobis DistanceThe Mahalanobis distance in (7) as-
Nn-dimensional space is normal. If this is not true, nonlineaumes a normal distribution of profiles. In practice, the distribu-
models, such as mixture models, could be more suitable ($@s of profiles will often be nonnormal, for example in cases
for example [31]). where the background of the object may be one of several pos-
e Projecting the Shape ModeBy projecting a shape sible choices. The ASM scheme proposed here uses a nonlinear
according to (5), i.e., fitting the shape model, the resultingjassifier in the gray-level appearance model and can, therefore,
model parameterd minimize the sum of squared distancesleal with nonnormal distributions.
between true positions and modeled positions. In practice, it
can be desirable to minimize only the distance between true IV. ASMsWITH OPTIMAL FEATURES
and model positions in the direction perpendicular to the object
contour because deviation along the contour does not chan%
whether pixels are inside or outside the object. In [32], it i
demonstrated how to perform this projection on the contour.

e Landmark Displacementgfter the Mahalanobis distance The aimis to be able t the land K points to better |
at each new possible position has been computed, Betials ‘heaimistobe able to move the Jandmark points to better fo-
tions during optimization, along a profile perpendicular to the

[25] propose to use dynamic programming to find new positior‘f . L . )
for the landmarks, instead of moving each point to the positi ject contour. The best location is the one for which everything
' n one side of the profile is outside the object, and everything

with the lowest distance. This avoids the possibility that neiglq-

boring landmarks jump to new positions in different direction2" the other side is inside ofdtTherefore, the probability that

Il. | MPROVING ASMS

Lp this section, a new gray-level appearance model is de-
ribed that is an alternative to the construction of normalized
irst derivative profiles and the Mahalanobis distance cost func-
tion of the original ASMs.

2We always performV,,., iterations, contrary to Cootes and Taylor who SThis assumes that the thickness of the object, in the direction perpendicular
move to a finer resolution if a convergence criterion is reached before tteea landmark, is larger than half the length of the profile. We will return to this
Noaxth iteration. point later.
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a location is inside/outside the object is estimated, for the aiBa Training and Classification
around each landmark separately. We base this classification ORhe next step is to specify how to construct a training set from

optimallocal image features obtained by feature selection amie training images, which classifier to use, and how to perform
a nonlinearkNN-classifier, instead of using the fixed choice O?eature selection

the normalized first derivative profiles and the Mahalanobis dis- Consider again the optimization procedure. At each iteration,

tance. each landmark is positioned 2t + 1 locations along a pro-

file perpendicular to the current object location. Obviously the

image structure is different for each landmark, but the positions
We are looking for general image structure descriptors. f\at are evaluated are also different for each resolution. There-

Taylor expansion approximates a functifraround a point of fore we will select a distinct optimal set of features for each

interestr, by a polynomial of (some) ordé¥. The coefficients |3ndmarkandfor each resolution, amounting 1. ... feature

A. Image Features

in front of each term are given by the derivatives) at sets. Note that in the original ASMs the same strategy is fol-
N lowed:n Ly, mean profiles and the covariance matriSgsas
f(z) ~ Z i' ) (20) (@ — o)™ (8) they appearin (7) are computed: for each landmark, at each res-
n. i
n=0 olution.

From each training image and for each landmark a square grid
Ngria X Ngria points is defined withV,,;q an odd integer and
%he landmark point at the center of the grid. The spaciagjis"

Derivatives of images are computed by convolution Wiﬂaf
derivatives of Gaussians at a particular seal&@his motivates
the use of a filter bank of multiscale Gaussian derivatives 1o . )

) . ) . ixels for theith resolution level.
describe local image structure. The Taylor expansion of image
is known as the local jet, or multiscale local jet in the case ?f

X : r each resolution level, a feature vector with 60 elements is
the Taylor expansion of the scale-space of the image [33], [34]. : o
: ) . . mpled at 25 points. The output of each feature vector is either
Given a set of filtered images, we will extract features for eac

inside (1) or outside (0) the object. The landmark points them-

location by taking the first few moments of the local distribu- ves are considered 10 be inside the obiects (this is an arbitrar
tion of image intensities (the histogram) around each locatiofy, o> are considered to be inside the o _Jecs_( sisanarbitrary
oice). The set of training images is divided in two equal parts.

The most suitable choice for a window function to compute this - T
histogram, is a Gaussian, since every other choice induces s is leads to two sets of samples, a training and a validation set.
1 1 e . . . . e
rious resolution [35]. The size of this window function is char- NN c(ljassgle; [38] W'rtlh v¥e|ghtt1ed vot_lng 1S 2usekir}]\m 0
acterized by a second scale parameteirhe construction of was used and the weight of each votesip(—d~), whered is

local histograms, extracted from a Gaussian aperture functidfi¢ Euclidean distance to each neighbor in the feature space.
Sequential feature forward selection (also known as

is called alocally orderless imagend discussed in [36]. The = 7 X i
idea of using moments of histograms of responses of an imag@itney’s method [39]-[41]) is used to find a feature set
to a bank of filters is a standard technique in texture analysfd; 8 MOSt fmax features. This set is subsequently trimmed
see, e.g., [37]. by sequentlal_featurg backward selection, that_ is, features

Notice that there are quite some parameters to vary: the or§&¢ removed if that improves performance. This procedure
of the Taylor expansion (i.e., the number of filters in the filtePf forward selection followed by backward selection is as
bank), the number of scalesto consider, the number of scale<" almost as effective as optimal “floating” feature selection
« to use for the local window, and the number of moments Schemes [40], [41]. The resulting set is the “optimal” set of
extract from the local histograms. It remains an open questififtures that will be used during segmentation. After feature
which combinations are optimal for a given application and evéglection, the samples from the training and the validation set
a given location in the images. Our strategy is to compute 8¢ merged and a list of the selected features for each landmark
extensive set of features and use feature selection technique®1#l €ach resolution is stored.
the subsequent classification stage to determine the optimal feaWhen the model is fitted to an input image, the scheme starts
tures. However, we must have> o, otherwise the histogram by computing the 60 feature images. Instead of sampling the
will be computed over a homogeneous region and will, thergormalized derivative profiles, the optimal feature set at each
fore, be uninteresting. position along the profile is fed into ANN classifier to de-

In this paper, we use only first and second momenis=£ termine the probability that this pixel is inside the object. The
1, 2), all derivatives up to second-ordet,(L,., Ly, L., L,,, Objective functionf(g) to be minimized is the sum of abso-
L,,), five inner scalesd = 0.5, 1, 2, 4, 8 pixels), and a fixed lute differences between the expected probability (O or one for
relation between the inner scateand the histogram extentof  points outside or inside the object, respectively) and the pre-
a = 20. For the first moments this yields an effective scale daficted probability, for each point; along the profileg
1.12, 2.23, 4.47, 8.94, and 17.89 pixels, respectively (because
the image is first blurred with a kernel of scateand subse-
quently with a kernelx = 2¢). The total number of feature
images is 2x 6 x 5= 60.

Obviously the method can be extended by using more scatdsere the index along the profile, that is oriented from the
and higher-order derivatives, higher-order moments, or by reutside to the inside of the object, runs frenk, to +k. This
leasing the fixed relation betweenandq. metric replaces the Mahalanobis distance from (7).

orid 1S fixed to 5, which means that for each landmark and

-1

+k
fe)=> g+ (1-g) ©)
0

i=—k 1=
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C. Summary of Training and Segmentation Algorithm TABLE I
L. DESCRIPTION OF THEOBJECTS AND IMAGES USED IN THE FIVE
Training the shape model. SEGMENTATION EXPERIMENTS
l) _C_onstruct Shape model @ [(2) and (3)] # object resolution no. of landmarks
Training the gray-level appearance model. images fixed total
1) Compute the 60 feature images for each training image! ~ house (simulated data) 200 x 200 80 5 25
2) For each landmark, at each resolution, construct a (I Tight lung (chest X-ray) 256 x 256 230 3 40
. . . I left lung (chest X-ray) 256 x 256 230 3 40
of training samples with as input the 60 features and_ IV corpus callosum (MRI) 320 x 256 90 3 50
output zero or one depending on whether the sample iSV  cerebellum (MRI) 320 x 256 90 7 50

or outside the object. Samples are taken fronivar N
grid around the landmark in each training image (so each
training set containsNgQrid samples).

3) For each training set, construckBIN classifier with se-
lected optimal features. So the final result of the traini
phase is a set of L.« Classifiers.

Segmentation.

1) Initialize with the mean shape

[ st
4 e
“'ﬁ‘fﬁ{gﬁf‘ﬁn{&

2) Start the coarsest resolution level. L W“‘“ ‘,;'
T AN .
3) For each landmark, put it &, + 1 new locations, eval- AR
uate (9) with thekNN classifier, move landmark to best @ (®) ©

new pOSition. Fig. 1. (a) A generic house image. The image has a resolution ok2200

; ; . pixels. New house images are randomly generated by adding a displacement
4) Fit the shape model to dlsplaced landmarks; cf. (5) (dx, dy) to each corner point wherér anddy are randomly selected from

5) Iterate steps 3 and ¥, times. the interval (- 20,420) pixels, and subsequently translating the distorted house
6) If the current resolution is not yet the finest resolutiorby (dz. dy) wheredz anddy are randomly selected from the intervai 35,

- : +35) pixels. (b) An example of a generated house image. (c) An example of a
move to a finer resolution and go to Step 3. generated textured house image. Random parts from two different textures, both

taken from the Brodatz set and histogram equalized, are used to fill the inside
D. Computational Considerations and outside of the house.

One of the advantages of the original ASM scheme compared
to other segmentation methods is its speed. The new metlib@ experiments, that are labeled | to V, are briefly described in
is considerably more computationally expensive. However, diable II. For all experiments, the images are randomly divided
the feature selection is to be done off-line (during training)nto training and test sets of equal size.
An optimized kNN classifier [42] was used, available on the The data for Experiment | consisted of simulated images with
web at http://www.cs.umd.edu/~mount/ANN. We provide sonman object that has the shape of a house from which the five corner
benchmark figures, obtained with a 600-MHz Pentium Il PC,points were perturbed. Details about the construction of the im-
256 x 256 image, and the same parameter settings that are uagés are given in Fig. 1.
in all experiments in this study. The feature images have to beThe image data for Experiments Il and Il are 230 standard PA
computed on-line (during segmentation), which required 8.0chest radiographs selected from a tuberculosis screening pro-
For the original ASM method, a number of blurred images haggam. The data contained both normal and abnormal cases of
to be computed, which required 0.35 s. patients of 16 years and older. The images were taken with a

During optimization feature vectors must be classified byobile Electrodelca (Oldelft BV, Delft, The Netherlands). The
kNN classifiers and this requires more time than computirigbe voltage was 117 kV and the images were printed or 10
Mahalanobis distances. The total time for segmentation whg cm film and digitized with a Lumisys 100 scanner (Lumisys,
0.17 s for the original ASM scheme and 4.1 s for the methddc., Sunnyvale, CA) and subsampled to 26@56 pixels. Two
with optimal features. observers independently segmented the right and left lung field.

Using a smaller feature set would reduce the computationalFor Experiments IV and V, a collection of 90 MRI slices of
cost of the method (almost linearly). An alternative would be tile brain was used, in which the corpus callosum and the cere-
select a subset of the 60 features for all operations (each lahgHum were segmented. Two to three slices were taken, on av-
mark, each resolution) so that it is no longer necessary to coemage, from the same patient. On average The images and seg-
pute all 60 images for each input image. However, this spesgkntations were made available by the University of lowa Hos-
improvement would probably come at the price of a decreaseqitals and Clinics and were also used by Brejl and Sonka in
performance. [15]. The resolution is 320« 256 pixels, 0.7 mm/pixel, ob-

tained by interpolating the original volumetric data acquired
V. EXPERIMENTS with 1.5-mm-thick coronal slices.
The objects in the images were annotated by a numbiseaf
landmarks and a closed contour between those fixed points from

Five different segmentation experiments have been pevhich a number of equidistant landmark points were sampled.

formed with three types of data. The images and objects usedime number of fixed and total landmarks are given in Table II.

A. Materials
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B. Methods

yielded good performance, after initial pilot experiments. For the
house and lung shapes, no shape alignment was performed ~~7

TABLE I
EXPERIMENTAL RESULTS OFORIGINAL ASM, ASM WITH OPTIMAL
For each parameter of ASMs, a fixed setting was selected thatearures DIRECTLY FITTING THE SHAPE MODEL AND A COMPARISON

WITH A SECOND OBSERVER(EXP. Il AND II)
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a shape model was constructed with= 0.995. For these ex- EXp/ L sl pto median
periments, omitting alignment led to better segmentation perfc igiis _ ‘ 0.536 + 0.205’)1 0,559l
mance. The number of modes in the shape models was six for  *>s optimal leatures 0.895 £ 0.034  0.89
house images and ten and 11 for the right and left lung, resp T .t ©f shape model 0.933 +0.029 0.937
tively. For the brain structures, shape alignment was used (in t . .
case better segmentation performance was obtained with the _LxP- 1L: Right lung feld  p+o median
of alignment) and a shape model explaining 98% of the varian ASMs . 0.882 £ 0.074  0.902
(f, = 0.98) was constructed. The number of modes in the sha ASMs optimal features 0.929 £ 0.026  0.933
model was six for the cerebellum and 20 for the corpus callosu  F'it of shape model 0.948 £ 0.030  0.955
The other settings were four levels of resolutidn.(, = 4), Second observer 0.945 £ 0.017  0.948
ten iterations/level ... = 10), profiles of length five § = 2) .
and evaluation of nine positions/iteration (= 4). When fitting ~_L>xP- 11I: Left lung field pto median
the shape model to the displaced landmarks, each mode 1 ASMs ) ) 0.861 = 0.109  0.891
constrained within two times the standard deviation=£ 2.0). ASM§ optimal features 0.887 £ 0.114  0.924
For the extended ASMs, at most ten features were selected it of shape model 0.942 £ 0.090  0.955
each landmark and each resolutigh.{. = 10). Training data  Second observer 0.934 £ 0.021  0.938
were selected from & 5 neighborhoods around each landmar )
(Ngria = 5). In the kNN classifier, five neighbors were used Exp. IV: Corpus callosum p+o median
(knn = 5). All parameter settings are listed in Table I. ASMs 0.617 £ 0.206  0.535
To compare different segmentations, the following “overlay ASMs optimal features 0.805 + 0.093  0.837
measure) was used Fit of shape model 0.887 £ 0.052 0.906
_ TP (10) Exp. V: Cerebellum nwto median
TP + FP + FN ASMs 0.870 £ 0.078 0.904
. . ASMs optimal features 0.910 £ 0.058 0.927
where TP stands for true positive (the area correctly classifi Fit, of shape model 0.950 + 0014  0.950

as object), FP for false positive (area incorrectly classified

object), and FN for false negative (area incorrectly classified as

background)2 = 1 for a perfect result an@ = 0 if there is no
overlap at all between the detected and true object. This meas
more closely reflects the idea of a good segmentation than
average distance between the true and detected landmark loc
tion, because the latter is not sensitive to shifts of the landmat
along the contour.

dlanQ of a second human observer.

-xperiment | was included to demonstrate the limitations of
Qg original ASM method. In the case of texture boundaries, a
pixel profile or a normalized first derivative of such a profile,

cﬂ Q of the ASM method with optimal features is close to

In all experiments, the performance when fitting the shaﬁ%cljl noft {Jhrodubce atl (fll_iar d'?tmcr?n ?etween tge msgj(fa and|OUt'|
directly to the true landmarks [cf. (5)] was also computed. FGoe ot the objec € optimal fealures are derived from foca

Experiments 1l and Ill manual segmentations by a second or[pag?fstrgstu(;eﬁmeaijrets and lcj:sually somtelz (?;]thesetr\]/v 'g Ee d'fd'
server were available. Therefofe for the second observer can rent.or |f0 tl eren eg urles.th onsquifn y t;—zme cf)t ?Se
be compared witlf2 for the automatic methods. on optimalteatures can deal with many difterent types ot texture

boundaries. For the other experiments the differences between
the methods are smaller, but in all cases ASMs with optimal
features produced significantly high@rvalues than the orig-
The results of all experiments are given in Table Ill. The rénal schemey < 0.001 in a paired t-Test for all experiments).
sult of directly fitting the shape model to the landmark point§his is also clear from Fig. 2 which shows scatter plots for each
cf. (5) is included because it indicates an upper bound for bategmentation task. In these plots, points which are above the di-
the original method and the method with optimal features. Noégonal line indicate images for which the segmentation with op-
that fitting the shape model minimizes the distance between tiivaal features is better than the result of the original scheme. Itis
predicted landmark position and the true landmark position;dpparent that a substantial improvement is achieved for Exper-
does not necessarily optimige Therefore, itis possible that animent | and evident improvements for Experiments I, IV, and
ASM scheme produces a set of model paramdieir which V. Only for Experiment Ill, the left lung fields, there is a con-
Q is higher thar for fitting the shape model directly. This oc-siderable number of cases where the original method has better
curred in a few cases. Another practical measure of the optinp&rformance.
performance any automatic segmentation method that is trainedExample results are shown in Figs. 3—7. There were no signif-
with examples can achieve, is the variation between observécant differences between the results for normal and abnormal
This measure is given for Experiments Il and I, where the mehest radiographs.

VI. RESULTS



VAN GINNEKEN et al: ACTIVE SHAPE MODEL SEGMENTATION WITH OPTIMAL FEATURES 931

09 2 ‘l’ @ Sno O “L‘}E By ‘ o,
o o ﬂu al’ g go - o o a a
£, i : )
‘ga.e §°‘
'gos E
g_ X §0.7
§ 04 gu
%0 o1 02 03 o4 o5 o8 o7 o8 o5 1 T e e er e e Fig. 3. Example result for the segmentation of the generated textured images
original ASMs original ASMs with a house shape. Segmentations are given by the thick white line. (a) True
shape. (b) ASMs{¢ = 0.219). (c) Optimal ASMs 2 = 0.861).
(@ (b)
. . conducted pilot experiments which indicated that the perfor-
° odp o0 s‘w —ts P mance of such an approach is worse than that of the method
[X] o o |9 K R .
3 ISAN g "~ le presented here, ASMs with optimal features. The set of selected
R P R R e 1 ‘N B || features varies considerably/landmark and resolution and is dif-
£l o L/ £ o | ferent for different applications. Had we used a standard feed-
é; %a.o o - forward neural network to for the classification of locations in
z 2o the image as inside or outside the object, insteadidild-clas-
A 02 .| e H H H H H
os — ) | J sifier and feature selection, the particular combination of input
| | . * e \ features constructed by the network could be considered as the
T gmnse T eew " optimal filter for that particular landmark and resolution. In our
: : case, the selected features cannot directly be interpreted as a

(© (d) single optimal filter, but the idea is similar. Note that the method
does not require the use okalN classifier; any classifier could

] be used instead. Similarly, the method does not rely on the spe-
"% cific set of features used here. More feature images can be used,
: 8 by using higher moments, more (higher-order) derivatives and
: by relaxing the fixed relation betweenanda.

The results of the improved ASM method approaches the me-
dian result of a second observer, which was available for Exper-
Y ; iments Il and Ill. However, the second observer performed still
. [ { significantly better.
00 : Both the original and improved ASM method contain a range

oranelAsye of free parameters (Table I). Although we have found that seg-
(e) mentation results are not very dependent on the choice for these
Fig. 2. Scatter plots of each segmentation experiment. The overlap mea&%am?ters’ as long as th(:,"y are Wlthm_a sepS|bIe range, it could
Q for the original ASM scheme is plotted agair@tfor the ASM method De desirable to use a straightforward iterative procedure to se-
with optimal features for eiach segmgnted image. (a) Hoqns&s,‘l.6410:13g lect optimal settings using the training set.
e i ) o €452, M6910™" & more elaborate cierio for evluating new landmark po-
sitions could be as follows. Currently landmarks are moved to

those locations where the profile values are closest to zero for

oo

ASMs with optimal features

VIl Discussion points outside the object and closest to one for points inside the
In this section, we discuss some properties and possible o&ject. In practice, the optimal profiles may be different. Espe-
finements of the proposed ASM method. cially if the object is very thin and the fitting occurs at a coarse

The largest improvement in performance is obtained for simesolution level, the innermost points of the profile may cross
ulated data in which the textural appearance of the image the border on the other side of the object! The actual profiles
side and outside the object is different. This indicates that than be extracted from the training set and used to construct a
proposed method may be especially useful to segment textureddel based on their mean and covariance matrices, that can
objects from textured backgrounds. An example could be segjeer the landmark displacement, in the same way as the original
mentation in ultrasound images. ASM scheme. Another enhancement would be to take into ac-

An important aspect is that an optimal set of features is sesunt the structure along the profile, instead of using local pixel
lected for each landmark and each resolution separately. Altelassification for each position along the profile independently.
natively, a single set of optimal features could be used, whidtinis may improve performance. Consider a set of images, half
would be equivalent to designing a pixel classifier that assigaBow a black object on a white background, and the other half a
each image location to one of two classes: outside or inside tlikite object on a black background. With local image features,
object of interest. The segmentation method could be run s impossible to classify locations as inside or outside the ob-
these “potential images” instead of on the real data. We hgeet. But a set of features measured along the profile can easily
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R

€) (b) (© (d)

l

Fig. 4. Example result for the right lung field segmentation. Segmentations are given by the thick white line. (a) True shape. (k) ASM&4. (c) ASMs,

Q = 0.945. (d) ASMs,Q = 0.952.

| |

€) (b) (© (d)

Fig. 5. Example result for the left lung field segmentation. Segmentations are given by the thick white line. (a) True shape. (£) ASM&73. (c) ASMs,
Q) = 0.935. (d) ASMs,Q = 0.961.

W - mentation. Using a faster classifier will also reduce computa-
. . > -a';.j tion time. Nevertheless, the algorithm still requires only a few
A * Sy i "~ seconds on standard PC hardware.
“ “ i “ We conclude by stating that active shape models provide a
. ; fast, effective, automatic, model-based method for segmentation
(b) (c) problems in medical imaging. The new ASM method introduced
Fig. 6. Example result of segmenting the corpus callosum. Segmentationsigx‘réhis paper significantly improves the original method through

given by the thick white line. (a) True shape. (b) ASMs= 0.474. (c) ASMs,  the use of an adaptive gray-level appearance model based on
2 = 0.828. local image features.
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