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Abstract Shape Modefs(ASMs) put forward by Cootes and Taylor
[1] and popular in medical image segmentation [11, 12, 13,

Active Shape Models (ASMs), a knowledge-based segmerf: 14, 15, 16].
tation algorithm developed by Cootes and Taylor [1, 2], The ASMs method uses a statistical model of the shape
have become a standard and popular method for detect-of the object, derived from landmark poifitsn the object
ing structures in medical images. In ASMs — and various contour, and a statistical model of the profiles perpendicu-
comparable approaches — the model of the object’s shapelar to the object contour, around each landmark. Both the
and of its gray-level variations is based the assumption of shape and the appearance model are linear: they are derived
linear distributions. In this work, we explore a new way from the covariance matrix. It is not unlikely that more so-
to model the gray-level appearance of the objects, using aphisticated models will improve the overall performance of
k-nearest-neighbors:(V N) classifier and a set of selected the scheme. This has been noted by several authors and
features for each location and resolution of the Active Shapemore complex alternatives for the shape model have been
Model. The construction of theN NV classifier and the se-  proposed, for instance by Cootes and Taylor [17] and re-
lection of features from training images is fully automatic. cently by Duta and Jain [18]. In this work we focus on the
We compare our approach with the standard ASMs on syn-appearance model. Cootes and Taylor propose to construct
thetic data and in four medical segmentation tasks. In all the covariance matrix of the normalized first derivatives of
cases, the new method produces significantly better resultghe profile around each landmark, and to move landmarks in
(p < 0.001). the image using the Mahalanobis distance. There is no par-
ticular reason why this should be an optimal choice for any
application. Therefore we propose a new scheme that au-
] tomatically selects local image features for each landmark
1 Introduction that are optimally able to classify a position in the image as
either inside or outside the object. As in the original ASMs
Segmentation is an important topic in the field of biomed- method, this appearance model will be constructed for mul-
ical image analysis. Dedicated solutions for the segmenta-tiple resolutions to enable coarse-to-fine fitting.
tion of a wide range of objects in a wide range of medi-  In this paper the extension of ASMs will be tested and
cal images have been proposed. Most of these algorithmsompared with the original scheme in four medical seg-
are the result of identifying separate tasks and applying en-mentation tasks: segmenting the left and right lung fields in
gineering principles to find appropriate solutions, as was chest radiographs and segmenting the cerebellum and cor-
noted by Duncan and Ayache in a recent review [3]. Al- pus callosum in 2D slices from MRI brain studies.
though such approaches have been successful in several ar-
eas, there is a clear need for generic segmentation schemes 1The term “active shape model” picked by Cootes and Taylor for their
that can be trained with examples. Such schemes acquire gegmentation algorithm is a somewhat awkward choice. It is used in the
iterature in a general sense, as a shape model that includes shape varia-

model of the shape of the ObJeCt to be Segmented and th%ions. In our case it refers to the complete method (and not just the shape

g_raY'|eV9| appearance of the object in the imgge and Pro-model) put forward in [1] and [2]. The latter reference is a technical report
vide a mechanism to fit these models to new images, thusthat describes the ASM method in detail; our implementation is based on

producing a segmentation. this description. _
. 2In the literature the term landmark often denotes anatomical landmark
A variety of such schemes have been proposed, see foboints, or points with recognizable geometric properties, but in this work

instance [4, 5, 6, 7, 8, 9, 10]. One popular method is Active itis a sample point along the object contour.




2 Theory 2.2 Gray-level appearance model

In this section we first briefly review ASMs, and subse- Th? gray-level appearance model that degcribeg the typi-
quently describe our extensions. In principle, the schemeCal image structure around each landmark is obtained from

can be used inD, but in this work we give a 2D formula- pixel profiles, sampled (using linear interpolation) around
tion. each landmark, perpendicular to the confour
On either sidek pixels are sampled using a fixed step
size, which gives profiles of lengt?k + 1. Cootes and
2.1 Shape model Taylor propose to use the normalized first derivatives of

An object is described by landmark points, (manually) de-  these profiles to build the gray-level appearance model. The
termined in a set of training images. The landmark points  derivatives are computed using finite differences between

(z1,91), ... (zn,yn) are stacked in shape vectors the (j — 1)th and the(j + 1)th point. The normalization is
such that the sum of absolute values of the elements in the

1 derivative profile is 1.

1) ; : o :

. _ _ Denoting these normalized derivative profiles as
These shapes can be aligned by translating, rotating ands, ... g, the mean profilg and the covariance matri,

scaling them so as to minimize the sum of squared distancegre computed for each landmark. This allows for the com-

between the landmark points, using an iterative schemepyation of the Mahalanobis distance between a new profile
known as Procrustes analysis [19, 2]. However, this align- g. and the profile model

ment can also be omitted, in which case a shape model is

X = (mlaylv"'axnayn)T'

built th_at can genergte only shapes Wlt_h a size, position flg) = (g — ) Sg‘l (g — 8). (7
and orientation consistent with the supplied examples. The
mean shape is computed, Minimizing the Mahalanobis distancg(g;) is equiva-

lent to maximizing the probability that; originates from
1 the distribution{gy, ..., gs}.
X = S ;Xl, (2)
. 2.3 Multi-resolution framework
the covariance
N These profile models, given lgyandS,, are constructed for
_ 1 V(e T multiple resolutions. The number of resolutions is denoted
S = s—1 ;(Xl X)(xi = %)%, 3) by L,..... The finest resolution uses the original image and
a step size of 1 pixel when sampling the profiles. The next
resolution is the image observed at scale- 1 and a step
size of 2 pixels. For subsequent levels- 20 and the step
size is also doubléd

and the eigensystem &f The eigenvectors corresponding
to thet largest eigenvalues; (the principal components)
are retained in a matri$e = (¢1|¢p2]...|¢:). A shape can
now be approximated by

x ~ % + ®b 4) 2.4 Optimization algorithm
whereb is a vector oft elements containing the model pa- Shapes are fitted in an iterative manner, starting from the
rameters, computed by mean shape. Each landmark is moved along the direction
perpendicular to the contour tg, positions on either side,
b=&"(x - x). (5) evaluating a total obn, + 1 positions. The step size is

] o 2(i=1) pixels for theith resolution level, the same as was
Such shape models are called point distribution models ;seq during construction of the model. The landmark is

[20]. When fitting the model to a set of points, the values of 1t ot the position with the lowest Mahalanobis distance.
b are constrained to lie within the rangen/X;, with m After moving all landmarks, the shape model is fitted to the

usually between 2 and 3. displaced points, yielding an updated segmentation. This is

The numbet of eigenvalues o retain is chosen so as 10 repeatedy,,,, times at each resolution, in a coarse-to-fine
explain a certain proportioffi, of the variance in the train-  t5chioff.

ing shapes, usually between 0.90 and 0.995. The desired

number of modes is given by the smallegbr which 3This requires a notion of connectivity between the landmark points
from which the perpendicular direction can be computed.

4We do not subsample the images, as proposed by Cootes and Taylor.

t 2n
> A 6 SWe always performV,,.. iterations, contrary to Cootes and Taylor
Z i > fo Z i (6) who move to a finer resolution if a convergence criterion is reached before
i=1 i=1 the N qqth iteration.
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Figure 1: (a) A generic house image, resolution 20000 pixels. New house images are generated by adding a displacement
(dz,dy) to each corner point wherér anddy are randomly selected from the interval (-20,+20) pixels, and subsequently
translating the distorted house By, dy) wheredz anddy are randomly selected from the interval (-35,+35) pixels. (b) An
example of a generated house image. (c) Texture image (resolutior 300 pixels) used to fill the outside of the house,
using a random offset. (d) Texture image (resolution 30800 pixels) used to fill the inside of the house, using a random

offset. Both texture images are taken from the Brodatz set and histogram equalized. (e) An example of a generated textured
house image. (f) Segmenting this image with the ASMs scheme leads to poor results; (g) but new approach with selected

local features produces a reasonable result.

2.5 New gray-level appearance model based This leaves us with several parameters to vary: the order

on selected local features of the Taylor expansion.g. the number of filters in the fil-

ter bank), the number of scalego consider, the number of

The aim of the appearance model is to be able to movescalesx to use for the local window, and the number of mo-
the landmark points to better locations during optimization, mentsm to extract from the local histograms. Our strategy
along a profile perpendicular to the object contour. The bestis to compute an extensive set of features and use feature
location is the one for which everything on one side of the selection techniques to find the best set of features.
profile is outside the object, and everything on the other side  After a range of initial experiments we decided to use
is inside of if. We propose a method to estimate the proba- only first and second moments:(= 1,2), all derivatives
bility that a location is inside/outside the object, optimized up to second orderly, L., Ly, Ly, Lyy, Lay), five in-
for the area around each landmark and each working resoner scales4 = 0.5,1, 2, 4, 8 pixels), and a fixed relation
lution separately. We base this classification on local im- petween the inner scate and the histogram extent of
age features obtained by feature selection and a non-lineap, = 25. Hence the total number of feature images is
kNN-classifier, instead of using the fixed choice of the nor- 2 « 6 x 5 = 60.
malized first derivative profiles and the Mahalanobis dis-  opyiously the image structure is different for each land-

tance. mark, but the positions that are evaluated are also different
Gaussian derivatives will be used as image filters. The for each resolution. Therefore we will select a distinct set of

rationale behind this choice is that these derivatives opti- features for each landmaakdfor each resolution, amount-

mally describe local image structure since they make up thejng tonL,,,, feature sets

local jet, the Taylor expansion of the image at each location  £rom each training image and for each landmark a

[21]. Features are extracted for each location by taking thegqyare grid i1 X Nyyiq points is defined withV,,..; an

first few moments of the local distribution of image intensi- g integer and the landmark point at the center of the grid.
ties (the histogram) around each location. The most suitableT,g spacing i€~ 1 pixels for theith resolution level.

choice for a window function to compute this histogram, is
a Gaussian, since every other choice induces spurious re
olution [22]. The size of this window function is charac-
terized by a second scale parameteiThe construction of
local histograms, extracted from a Gaussian aperture func
tion, is called alocally orderless imagend discussed in
depth in [23]. The idea of using the moments of histograms
of responses of an image to a bank of filters is a standard

teChmque In texture analyS|S* see for instance [24]' “In the original ASMs the same strategy is followedL,, ., mean

profilesg and covariance matrices, as they appear in Eq. (7) are com-
6This assumes that the thickness of the object, in the direction perpen-puted: for each landmark, at each resolution.

dicular to a landmark, is larger than half the length of the profile. We will 8The landmark points themselves are (arbitrarily) considered to be in-

return to this point in the Discussion. side the objects.

For each landmark and for each resolution level, a fea-
Sfure vector with 60 elements is sampled\,,, points. The
output of each feature vector is either inside (1) or outside
(0) the objed. The set of training images is divided in two
‘sets of equal size, a training set and a validation sétNN
classifier withk y x neighbors and weighted voting is used
in which each neighbor votes with a weight efp(—d?),




with d is the Euclidean distance from sample to neighbor in in the experiments, that are labelled A to D, are briefly de-
the feature space. scribed in Table 1.

Sequential feature forward selection [25, 26] is used to  The image data for Experiments A and B were standard
find a feature set of at mogt, ... features. This setis subse- PA chest radiographs selected from a tuberculosis screen-
quently trimmed by sequential feature backward selection,ing program. The data contained both normal and abnormal
that is, features are removed if that improves performance cases of patients of 16 years and older. The images were
The resulting set is the “optimal” set of features that will be taken with a mobile Electrodelca (Oldelft BV, Delft, The
used during segmentation. Netherlands). The tube voltage was 117 kV and the im-

When the model is fitted to an input image, the scheme ages were printed on 10 by 10 cm film and digitized with a
starts by computing the 60 feature images. Instead of sam-Lumisys 100 scanner (Lumisys, Inc., Sunnyvale, CA) and
pling the normalized derivative profiles, the optimal feature subsampled to 256& 256 pixels. Two observers have inde-
set at each position along the profile is fed intbNN clas- pendently segmented the right and left lung field.
sifier to determine the probability that this pixel is inside the  For Experiments C and D, a collection of 90 MRI slices
object. The objective functiofi(g) to be minimized is the  of the brain has been used, in which the corpus callosum
sum of absolute differences between the expected probabiland the cerebellum have been segmented. The images and
ity (0 or 1 for points outside or inside the object, respec- segmentations have been made available by the University
tively) and the predicted probability, for each point along of lowa Hospitals and Clinics and have also been used by
the profile: Brejl and Sonka in [10]. The resolution is 320256 pix-

els, 0.7 mm per pixel, obtained by interpolating the original

—1 +k volumetric data acquired with 1.5 mm thick coronal slices
fle)=> gi+> (1—g) (8)  with 0.7 by 0.7 mm resolution.
i=—k =0 The objects in the images were annotated by a number

where the index along the profige that is oriented from the  f fixedlandmarks and a closed contour between those fixed

outside to the inside of the object, runs frem to+&. This ~ Points from which a number of equidistant landmark points

metric rep'aces the Mahalanobis distance from Eq (7) were Sampled. Table 1 lists the number of fixed and total
landmarks.

3 Example 4.2 Methods

Consider the segmentation of a simple object that is filled For each parameter of ASMs, a fixed setting was selected
with a certain texture and placed on a background of a dif- that yielded good performance, after initial pilot experi-
ferent texture. This is a particular example of a segmenta-ments. For the example images from the previous sec-
tion task for which the original ASMs scheme is not suited. tion and for the lung shapes, no shape alignment was per-
Because of the randomness in the texture, the pixel profilesformed (this improved performance) and a shape model was
that cross the object border will not be very different from constructed in which 99.5% of the variance was explained
those that do not cross the border. (f, = 0.995). For the brain structures, shape alighment was
We created some sample data and segmented these withsed (in this case better results were obtained with the use of

both schemes, the original method and the new method.alignment) and a shape model explaining 98% of the vari-
This is described in Figure 1. Both methods were trained ance {f, = 0.98) was constructed. The fact thAt is lower
on 45 images, for parameter settings see the next sectionfor the aligned shapes is because alignment reduces the to-
The point to make is that the original ASMs cannot deal tal amount shape variability and, thus, a higher proportion
with such textural object boundaries, while the new method of the variation in the data can be attributed to noise.
produces reasonable results. The other settings were 4 levels of resolutidn, (., =

4), 10 iterations per levelX,,.. = 10), profiles of length 5

(k = 2) and evaluation of 9 positions per iteration, (= 4).

4 Experiments When fitting the shape model to the displaced landmarks,
each mode was constrained within 2 times the standard de-
4.1 Materials viation (m = 2.0). For the extended ASMs, at most 10

) ) ) features were selected for each landmark and each resolu-
Four different segmentation experiments have been peryion (f,... = 10). Training data were selected from 5 by 5
formed with two types of data. The images and objects usedneighborhoods around each landmah,(;; = 5). In the

9This procedure of forward selection followed by backward selection kNN classifier, 5 nglghbors were US@V(N = 5)' )
is almost as effective as optimal ‘floating’ feature selection schemes [26] To compare different segmentations, the following




experiment object image description resolution images landmarks
test training fixed total

A right lung field standard PA chest radiographs 25@56 115 115 3 40
B left lung field standard PA chest radiographs 25856 115 115 3 40
C corpus callosum 2D slices of MRI brain studies 32@56 45 45 3 50
D cerebellum 2D slices of MRI brain studies 32®56 45 45 7 50

Table 1: Description of the objects and images used in the four segmentation experiments. The experiments are labelled A
to D. There are two different image databases: chest radiographs used in Experiments A and B, and MRI brain data used in
experiments C and D.

“overlap” measuré) was used Experiment A: Right lung field p + o (median)
ASMs 0.882+ 0.074 (0.902)
Q- TP ) ASMs with local features 0.922 0.026 (0.933)
TP+ FP+ FN’ Fit of shape model 0.94& 0.030 (0.955)
Second observer 0.9450.017 (0.948)

where TP stands for true positive (the area correctly classi-
fied as object), FP for false positive (area incorrectly clas-

sified as object), and FN for false negative (area incorrectly Experiment B: Leftlung field <+ o (median)

classified as background). When= 1 the overlap is com- ASMs ) 0.861+ 0.109 (0.891)
plete and the result is perfect; fr— 0 there is no overlap ~ ~SMs with local features 0.88% 0.114 (0.924)
at all between the detected and true object. This measure ! of shape model 0.942 0.090 (0.955)

more closely reflects the idea of a good segmentation than Second observer 0.9340.021 (0.938)
the average distance between the true and detected land- _ .

mark location, because the latter is not sensitive to shifts EXPeriment C: Corpus callosumy. & o (median)

of the landmarks along the contour. 0.617+ 0.206 (0.535)

In all experiments the performance when fitting the A_SMS with local features 0.80% 0.093 (0.837)
shape directly to the true landmarkd.(Eq. (5)) was also Fit of shape model 0.88% 0.052 (0.906)
computed because it indicates an upper bound for both the _ )
original method and the method with local features. For Ex- EXPeriment D: Cerebellum p £ o (median)
periments A and B manual segmentations by a second ob- ASMs ) 0.870+ 0.078 (0.904)
server were available. Therefofefor the second observer ~ASMs with local features 0.918 0.058 (0.927)

Fit of shape model 0.956 0.014 (0.950)

can be compared witl for the automatic methods.

Table 2: Mean, standard deviation and median results of the
overlap measur€ for all experiments. The original ASM
5 Results scheme is compared with the method with the best local
features and the result of directly fitting the shape model to

it fimg the Shae modol mimmizes e distance petwoerNe 1U€ landmark positionsi E. (5). In Experiments A
9 P and B the mean, standard deviation and median results of a

the predicted landmark position and the true landmark po- .
L . e . second human operator are also given.

sition; it does not necessarily optimife Therefore it is

possible that an ASM scheme produces a set of model pa-

rameterd for which is higher tharf for fitting the shape

model directly. This actually occurred in a few cases. An-

other practical measure of the optimal performance any au-from Figure 2 which shows scatter plots for each experi-

tomatic segmentation method that is trained with examplesment. In these plots, points which are above the diagonal

can achieve, is the variation between observers. This mealine indicate images for which the segmentation with local

sure is given for Experiments A and B, where the medlan features is better than the result of the original scheme. It

of the ASM method with local features is close to median is apparent that a substantial improvement is achieved for

Q2 of a second human observer. Experiment A, C, and D. Only for Experiment B, the left
In all cases ASMs with local features produced signifi- lung fields, there is a considerable number of cases where
cantly higherQ2 values than the original scheme< 0.001 the original method has better performance. Figure 3 shows

in a paired t-Test for all experiments). This is also clear a typical result for each experiment.
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Figure 2: Scatter plots of each segmentation experiment. The overlap ménguréhe original ASM scheme is plotted
against for the ASM method based on an optimal set of local features for each segmented image.

6 Discussion and conclusion example could be segmentation in ultrasound images, but
this remains to be tested. However, the method requires the
The fact that a set of features is selectedefachlandmark  texture of object and background to be different; otherwise
andeachresolution separately is an important aspect of the - as in camouflaged objects - local classification is impossi-
new method. It turned out that the selected set of featuresple and difficulties will arise. In that case an analysis of the
varied considerably from experiment to experiment, land- complete profile would seem to be a preferable approach.

mark to landmark and resolution to resolution. More fea- 14 original ASM scheme is an extremely fast segmenta-
ture images can be used, by using higher moments, morg;,, method, yielding result in tenths of a second on regular
(higher-order) derivatives and by relaxing the fixed relation PC hardware and 2D images. The new method is consider-
between> and. L ) ably more computationally expensive. However, all the fea-
A more elaborate criterion for evaluating new landmark .o <alection can be done off-line. We used an optimized
positions could be as follows. Currently landmarks are ;.\ classifier [27], and other, faster, classifiers could be
moved to those locations where the profile values are closes} s q instead. Substantial speed improvements could be ob-
to O for points outside the object and closest to 1 for points yyineq by using pyramid-like schemes in which filters of
inside the object. In practice the optimal profiles may be |56 scale would be used on subsampled versions of the
different. Especially if the object is very thin and the fitting input images. Our current implementation of the ASMs
occurs at a coarse resolution level, the innermost points of . .14 with local features requires twenty times as much
the profile may cross the border on the other side of the Ob'computation time as the original ASMs scheme, and takes
ject! The actual profiles can be extracted from the training 4.1 seconds to complete on a 500 MHz Pentium Il PC with

set and used to construct a model based on their mean ang, given parameter settings and images of 256 by 256 pix-
covariance matrices, that can steer the landmark dlsplaceé|s_

ment, in the same way as the original ASM scheme. An-

other enhancement would be to take into account the struc- | In E(.)nhdUSIO.I; Wefhave ﬁshoyvn that act|ye Sth? med;j
ture along the profile, instead of using local pixel classifica- els, which provide a fast, efiective, automatic, model-base

tion for each position along the profile independently. This meth.od.fpr segmentation problems in medical imaging, can
may improve performance. Consider a set of images, halfP€ significantly improved through the use of an adaptive

show a black object on a white background, and the othergr‘w'le_\/eI appearance model based on a non-linear classi-

half a white object on a black background. With local im- fier trained with an optimal set of local image features.

age features, it is impossible to classify locations as inside

or outside the object. But a set of features measured along

the profile can easily distinguish correct profiles, with an

intensity jump at exactly the landmark location, from incor- ACknOWledgementS

rect profiles, with no intensity jump or an intensity jump at

a different location. Marek Brejl, John Haller and Lisann Bolinger from the Uni-
The example results from section 3 indicate that the pro- versity of lowa are gratefully acknowledged for allowing

posed refined ASMs method may be especially useful tothe use of their MR brain data and manual segmentations

segment textured objects from textured backgrounds. Anfor this paper.



input image ASMs local features ASMs 2nd observer

with true shape Q2 =0.884 Q =0.945 Q =0.952

I \ I -

input image ASMs local features ASMs 2nd observer
with true shape Q2 =0.873 0 =0.935 Q2 =0.961

true shape ASMs local features ASMs
Q =0.679 Q =0.909

Figure 3: Example results for right lung field (Experiment A, top row), the left lung field (Experiment B, second row), the
corpus callosum (Experiment C, third row) and the cerebellum (Experiment D, bottom row) segmentation. Segmentations
are given by the thick white line. Below each segmentafias given.
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