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Abstract

T wave alternans (TWA) has been proposed as a
marker of cardiac instability and high risk for malignant
ventricular arrhythmias and sudden cardiac death. Several
algorithms have been used to detect and estimate TWA, such
as the spectral method (SM), complex demodulation (CD)
or correlation method. In this work, we show that SM and
CD methods can be understood as a Generalized Likelihood
Ratio Test (GLRT) for TWA episodes in Gaussian noise.
However, the noise distribution in ECG recordings is more
’heavy-tailed’ than Gaussian noise due to outliers (eg
artifacts, impulsive noise, baseline wandering, or ectopic
beats). In this paper, we derive a similar GLRT TWA
detector and amplitude estimator for Laplacian noise. The
resulting estimator is, in fact, a “median filtered complex
demodulation”. Simulation results suggest that this new
approach is more robust than CD or SM when physiological
noise is present. The effect is clearer when the noise
distribution has heavier tails, as in the case of muscular
noise.

1. Introduction

Electrical T-wave alternans (TWA), defined as a
consistent fluctuation in the repolarization morphology
which repeats on every-other-beat basis, have been
documented in a wide range of experimental and clinical
situations, such as long QT syndrome, myocardial ischemia
and infarction, coronary artery occlusion, Printzmetal
angina and several other pathologic conditions.

Although visible TWA is an infrequent phenomenon,
in recent years, computerized analysis of digital ECG
recordings allowed the identification of subtle and non-
visible (microvolt) TWA, much more common than visible
TWA. Recently, several studies showed that TWA is related
to cardiac instability and high risk for malignant ventricular
arrhythmias and sudden cardiac death [1]. Thus the
importance of developing robust and sensitive methods for
detecting TWA in ECG signals.

Several methods for TWA detection have been proposed.
All of them are based on the well-known problem of

spectral estimation. The spectral method (SM) [1] used the
FFT to analyze the frequency component 0.5 cycles/beat
over the aligned ST-T complexes. In the complex
demodulation approach (CD) [2], the alternant component
in the aligned ST-T complexes is demodulated and low-
pass filtered to obtain a continuous beat-to-beat alternans
measurement. More recently several global methods
have been applied that consider the repolarization as a
whole, based on Karhunen-Loève transform [3] and on the
correlation with a median beat [4].

In this paper, we derive and evaluate a more robust
detector developing a GLRT detector under the assumption
of Laplacian noise. In Section 2, we show that the SM and
CD approaches can be considered GLRT detectors of TWA
in Gaussian noise, we develop the GLRT for Laplacian
noise and we describe the simulation study. In Section 3, we
show some simulation results and in Section 4, we expose
the conclusions of the work.

2. Materials and methods

2.1. GLRT for TWA in Gaussian noise

In all the published methods the ECG signal is reduced to
a number of beat-to-beat series related to the ST-T complex
of the ECG (usually the amplitude of the ST-T complex at
a given sample within the complex). The TWA detection
methods are applied to these beat-to-beat series.

Each of these series, can be modelled as:

x[n] = a · e[n] · (−1)n +C +w[n] n = 0 · · · N − 1, (1)

where e[n] is the normalized beat-to-beat shape of the
TWA, a andC are unknown constants wich represent the
TWA amplitude and the component of the T wave which
repeats on every beat.w[n] represents the additive noise,
which is usually assumed to be white and Gaussian with pdf
∼ N (0, σ2). If

∑N−1
n=0 a·e[n]·(−1)n = 0 (eg, if the episode

shape is symmetrican and N is even), the termC can be
easily cancelled by subtracting the mean of the observed
values. The model for the observed detrended series is
y[n] = x[n]−C = a e[n] (−1)n+w[n], n = 0 · · · N − 1.

If the shape of the episode,e[n], is known, this
information can be used to estimate and detect the TWA
episodes.



In TWA detection, we have the following hypothesis
testing problem:

H0 : a = 0
H1 : a 6= 0 . (2)

This problem holds the classical linear model. To obtain the
GLRT detector [5, Theorem 7.1], we need the maximum
likelihood estimator (MLE) ofa underH1:

â=
1
N

N−1∑
n=0

y[n]e[n](−1)n. (3)

and the corresponding GLRT is to decideH1 if

T (y) =
1
N

(∑N−1
n=0 y[n]e[n](−1)n

)2

σ2
> γ, (4)

which is the periodogram of the detrended datay[n]
windowed bye[n], evaluated atf = 0.5. The noise variance
in the denominator is suposed to be known. Otherwise,
it can be estimated or simply included in an adaptive
threshold.

To detect transient episodes beginning at an unknown
time within the observed data, the GLRT detector consists
on a sliding window approach, applying (4) to each group of
N correlative samples, and looking for the maximum. This
implementation can also be seen as the output of a filter
matched to the TWA episode shape.

To detect episodes with a given shapee[n], the GLRT in
eq. (4) is esentially the modified periodogram, windowing
the data withe[n]. In the sliding window version, the test is
the square of the output of the filter with impulse response
h[n] = e[−n](−1)n to the inputy[n], or equivalently, the
result of complex demodulation of the signaly[n] using a
low-pass filter with impulse responseg[n] = e[−n].

If nothing is known about the TWA shape, it can be
considered stationary during the intervals ofN samples.
Thene[n] = 1, n = 0 · · ·N − 1 (a rectangular window)
andT (y) is the periodogram of the series divided by the
noise power. This GLRT for rectangular-shaped episodes is
esentially the SM for TWA detection.

The Gaussian noise model used in this Section, usually
assumed because of its mathematical simplicity and
justified by the central limit theorem, does not characterize
well some types of noise, due to the presence of “noise
spikes”. In ECG recordings, the presence of artifacts,
baseline wandering, or ectopic beats, usually make the
noise in the beat-to-beat series to be more “spiky” than
Gaussian noise. The Laplacian distribution is an example
of a more heavy-tailed statistic (Pearson kurtosisα4=6)
and can model the noise in the TWA series better than
the Gaussian one, while still keeping some mathematical
tractability.

2.2. GLRT for TWA in Laplacian noise

Now, the model is the same as in (1) but the noise is
assumed to be white and with Laplacian pdf:

p(w[n]) =
1√
2σ2

exp

(
−
√

2
σ2
|w[n]|

)
, (5)

The constant termC in (1) can be again easily cancelled.
If we assume a constant episode shape of the TWA
within the analysis window, iee[n] = 1 n =
0 · · · N − 1, then, the model for the detrended signal is
y[n] = x[n]− C = a · (−1)n + w[n] n = 0 · · · N − 1.

The multivariate pdf of the detrended data underH1 for
a givena is:

p(y[0], y[1] · · · y[N − 1]; a, H1)

=
(

1
2σ2

)N
2 exp

(
−
√

2
σ2

∑N−1
i=0 |y[n]− a · (−1)n|

)
.(6)

Thus, the MLE ofa, â, is the value that minimizesJ(a) =∑N−1
i=0 |y[n]− a · (−1)n| =

∑N−1
i=0 |y[n](−1)n − a|. It

can be shown [5] that

â = medianN−1
n=0 (y[n](−1)n) = zmed. (7)

The MLE is the median of the demodulated seriesz[n] =
y[n](−1)n. This equation is similar to (3), but computing
the median instead of the average. Substituting this value
into the logarithm of GLRT, we obtain the following test:

T (y)=2 lnLG(y)=

√
8
σ2

N−1∑
n=0

(|z[n]|−|z[n]−zmed|) ,

(8)
which can be simplified [5] to

T ′(y)=


√

32
σ2

∑
{n: 0<zn<zmed} zn if zmed ≥ 0

−
√

32
σ2

∑
{n: zmed<zn<0} zn if zmed < 0

,

(9)
proportional to the sum of the absolute values of all samples
of the demodulated series with values between zero and
the median. Again If the noise variance is not known,
it can be absorbed by the threshold. A sliding-window
implementation is also possible when the position of the
episode beginning is unknown. From equations (3) and (9)
it is clear that both the GLRT alternans detector and MLE
alternans estimator (the output of a median filter) are robust
to the presence of outliers in the data series.

2.3. Detectors and estimators

Four TWA detectors were implemented and evaluated in
this study: Complex Demodulation (CD), Spectral Method
(the sliding window variant) (SM), Median filtered complex



demodulation (MCD) and the GLRT for Laplacian noise).
All of them share the same preprocessing stage, including
QRS detection, baseline wandering, linear filtering (20th-
order equiripple linear phase FIR low-pass filter with
transition band between 15 and 30 Hz), ST-T segmentation,
alineation and decimation. Thus, the ECG signal is
transformed into 17 beat-to-beat series corresponding to
samples within the ST-T segment. The tests used for
detection and the amplitude estimators are given in Table 1.
The rms values of each test over the whole ST-T segment
were compared to a threshold to decide if there was or not
TWA.

Table 1. Detection test and amplitude estimator used in the
implemented methods.

Test Estimator

CD
∣∣∑N−1

n=0
y[n]h[−n](−1)n

∣∣ 1
N

∑N−1

n=0
y[n]e[n](−1)n

SM
∣∣∑N−1

n=0
y[n] (−1)n

∣∣ 1
N

∑N−1

n=0
y[n](−1)n

MCD |median(y[n] (−1)n)| median(y[n] (−1)n)
GLRT eq. (9) -

2.4. Simulation study

To evaluate the TWA detectors under different noise
conditions, we propose the simulation study shown in
Figure 1. Clean ECG segments of 128 beats were obtained
by repetiting a single beat. Noise and TWA were added to
this signal.
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Figure 1. Simulation of ECG signals with T-wave alternans
episodes and four noise sources.

Four different noise sources were considered: simulated
Gaussian and Laplacian noise and two recordings of
physiological noise from theMIT-BIH Noise Stress Test
database [6]: electrode motion (’em’) and muscular activity
(’ma’). To compare the effects of the different noise types,
the noise were scaled so that the noise level after linear
filtering (aproximately the band DC-20Hz) was the desired.

TWA was simulated by adding and subtracting a hanning
window to the ST-T complex of the simulated beats. The
amplitude of this waveform was modulated beat-by-beat
by a trapezoidal episode shape of 40 beats of duration and
being 18 beats at its maximum value. The episodes were
centered in the 128-beat segment.

The noise type and level and the TWA amplitude were
the parameters of the proposed simulation.

3. Results

3.1. Statistics of the noise

The degree of nonGaussianity of a random variable is
tipically measured by its kurtosis relative to a Gaussian pdf.
We have computed the kurtosisα4 of the MIT-BIH noise
recordings forem and ma noises, after baseline filtering
and applying the same lowpass filter as the one used with
the signal. We have consists of two channels of thirty
minutes. The total kurtosis of each channel areαem,04 =
7.7, αem,14 = 3.5, αma,04 = 16.8, αma,14 = 10.0. Dividing
the recordings in 15 2-minute fragments (in the order of
the length of the data processed together by the detectors),
we obtain a mean kurtosis of 4.4 forem and 9.4 forma
noise. Clearly, both kinds of noise are more heavy-tailed
than normal distribution (α4 = 3), especially, the muscular
noise. So, it can be expected a better performance of
the TWA detector derived from the Laplacian noise model
(α4 = 6) .

3.2. Simulation results

For this study, ECG segments with the described noise
types and with noise levels ranging from 0µV to 100µV
were simulated, with TWA amplitude of 20µV and also
without TWA. For each parameter set, 100 realizations were
analyzed with the four detectors, and receiver-operating
characteristic (ROC) curve were relating the sensitivity
and specificity were obtained sweeping different threshold
values. Figure 2 shows the ROC curves of the four detectors
with a noise level of 40µV (i.e., an alternans-to-noise ratio,
ANR, of -6 dB).
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Figure 2. ROC curves for a noise level of 40µV.



To compare in a simple way the behavior of the detectors
when they face with different levels of noise, we summarize
the information in the ROC curve with a single paramater,
calledS95 and defined as the sensitivity (%) of the detector
using a threshold so that the specificity is 95%. In Figure 3
S95 is plotted against the ANR for different noise types and
detectors.
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Figure 3. Performance of the detector (S95) as a function
of the noise level.

The performance observed is similar for all the studied
detectors when the noise distribution is Gaussian, as it
can be seen in pannel (c). In the case of ’em’ noise,
the performance is also similar using any approach, but
clearly poorer than with the same level of Gaussian noise.
When the ECG is contaminated with Laplacian noise, the
GLRT and MCD detectors perform slightly better than the
classical CD and SM approaches. The clearest differences
between the detectors are observed when facing to ’ma’
noise, which has the more heavy-tailed noise distribution.
Then, the GLRT approach for Laplacian noise surpasses
widely the performance of the others: while the GLRT
detector obtains obtainS=95%, Se=95% with ANR=-7dB,
the CD needs an ANR of -1 dB to get the same performance.

4. Discussion and conclusions

Both the widely-used SM and CD methods for TWA
detection can be interpreted as GLRT detectors (and also
ML estimators) matched to TWA episodes with a given
shape and duration (rectangular in the case of SM and the
impulse response of the low-pass filter in CD) under the
hypothesis of white Gaussian noise.

A new robust approach for detecting TWA has been
proposed, using a signal model including Laplacian noise.
As the Laplacian noise distribution is more heavy-tailed
than the Gaussian one, the resulting GLRT detector and

ML estimator are intrinsecally more insensitive to extreme
values. This robustness is expressed mathematically in
eq. (7) and (9) by the ’median’ function. It is clear that
changing arbitrarily any sample in the beat-to-beat series
has little effect on both equations.

Numerical results of the simulations show that all the
methods perform similarly with Gaussian noise. With
Laplacian noise, the GLRT and the median filtered complex
demodulation (MCD) seem to have better performance than
the classical methods based on a linear combination of the
data, but the differences were not so big as expected. On
the other hand, when the kurtosis of the noise is even greater
(e.g. with ’muscular activity’ noise), the performance of the
linear methods decays and the proposed GLRT approach
makes the difference.

Acknowledgments
This work was supported by projects TIC2001-2167-

C02-02 from the MCyT and FEDER and P075/2001 from
DGA (Spain).

References

[1] Rosenbaum DS, Jackson LE, Smith JM, Garan H, Ruskin JN,
Cohen RJ. Electrical alternans and vulnerability to ventricular
arrhythmias. The New England Journal of Medicine January
1994;330(4):235–241.

[2] Nearing BD, Huang AH, Verrier RL. Dynamic tracking of
cardiac vulnerability by complex demodulation of the T wave.
Science 1991;252:437–440.

[3] Laguna P, Ruiz M, Moody GB, Mark RG. Repolarization
alternans detection using the KL transform and the
beatquency spectrum. In Computers in Cardiology. IEEE
Computer Society Press, 1996; 673–676.

[4] Burattini L, Zareba W, Courdec JP, Titlebaum EL, Moss A.
Computer detection of non-stationary T-wave alternans using
a new correlation method. In Computers in Cardiology,
volume 24. 1997; 657–660.

[5] Kay S. Fundamentals of statistical signal processing, volume
II-Detection theory. Prentice-Hall, 1998.

[6] Moody GB, Mark RG. The MIT-BIH arrhythmia database
on CD-ROM and software for use with it. In Computers in
Cardiology. IEEE Computer Society Press, 1990; 185–188.

Address for correspondence:
Juan Pablo Martı́nez Cort́es
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