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Abstract. Knowledge of brain aneurysm dimensions is essential in min-
imally invasive surgical interventions using Guglielmi Detachable Coils.
These parameters are obtained in clinical routine using 2D maximum
intensity projection images. Automated quantification of the three di-
mensional structure of aneurysms directly from the 3D data set may be
used to provide accurate and objective measurements of the clinically
relevant parameters. In this paper we present an algorithm devised for
the segmentation of brain aneurysms based on implicit deformable mod-
els combined with non-parametric region-based information. This work
also presents the evaluation of the method in a clinical data base of 39
cases.

1 Introduction

Brain aneurysms are pathological dilatations of cerebral arteries. They tend to
occurr at or near arterial bifurcations, mostly in the Circle of Willis. Studies
assert that the incidence is between 0.2 and 8.9% with fatal consequences in
2.6−9.8% and serious consequences in 10.9% of the patients due to intra cranial
bruise, subsequent recurrent bleeding, hydrocephaly and spasms [13]. In the last
years, there has been a growing trend to practise minimally invasive endovas-
cular procedures. Aneurysm coiling with Guglielmi Detachable Coils (GDC) is
probably the most widespread method for permanent aneurysm embolization.
The placement of coils inside the aneurysm promotes blood coagulation avoiding
blood flow and pressure thus hampering its rupture [6]. A correct size selection
and placement of the GDC inside the aneurysm is crucial for the success of the
treatment. It has been shown that the knowledge about the dimensions of the
aneurysm plays an important role in the selection of patients and materials for
an appropriate treatment [3].

To obtain the aneurysm dimensions, it is customary to generate a reconstruc-
tion from the CTA images using Maximum Intensity Projection (MIP). Manual
measurements are then carried out on the basis of this these 2D projections.
The selection of the window levelling settings of the console and the optimal
projection angle introduce a high degree of subjectivity to the quantification of
the aneurysm morphology. Therefore, the use of computerized 3D segmentation



techniques is crucial for an accurate quantification of the aneurysm dimensions
as well as a correct interpretation of the 3D morphology.

Most approaches used for the segmentation of vascular structures in CTA
and MRA images belong to the class of deformable models [5, 14, 9]. Although a
number of algorithms based on implicit deformable models have addressed the
problem of cerebral vessels segmentation [9, 4], these do not produce satisfactory
results when confronted with images of standard quality in average radiology
departments of hospitals. For example, the work reported by Deschamps [4] deals
with rotational angiography where the background and bone tissues have a well
differentiated contrast with respect to vessels. On the other hand, the ranges of
vessel and bone intensities in CTA overlap. Most of the previous attempts to
solve this problem have presented segmentation results on few selected images.
There is a general lack of larger evaluation studies on image databases acquired
under routine clinical conditions. The Geodesic Active Regions model [11] (GAR)
combines the classical Geodesic Active Contours model (GAC) with regional
information. This method has been successfully used in the segmentation of brain
aneurysms [4, 7]. These authors model region-based information by Gaussian
descriptors. However, the assumption of a parametric form for the probability
density function is not always valid, in particular not in our CTA images.

The goal of this article is to include non-parametric information in the GAR
model. This is done using a nearest-neighbor classifier to estimate the underlying
probability density functions. The method has been evaluated in a database of 39
brain aneurysms placed within the Circle of Willis. The technique is compared
against manual measurements of three geometrical descriptors of aneurysm mor-
phology that are standard in assessing the viability of surgical treatment with
GDCs.

The paper is organized as follows. Section 2 explains the devised segmentation
method. Section 3 describes the materials and methods used for its evaluation.
The results of the study are reported in Section 4. The discussion and conclusion
of the results is presented in Section 5.

2 Aneurysm segmentation

In this article, we propose to use a k-nearest neighbor (kNN) rule to estimate
the underlying tissue probability functions for vessel, background and bone. A
Maximum A Posteriori (MAP) classifier is used to obtain a rough classification
of the image domain into regions matching with each tissue. The likelihood used
for each class is the probability estimated by the kNN rule. Then, the GAR
method is used to obtain a 3D model of the aneurysms with subvoxel accuracy.
The probabilities estimated by the kNN rule are also used to build regional
descriptors and the voxels belonging to vessel in the MAP partition are used as
initialization for an improved GAR method.

2.1 Non parametric tissue probability estimation

The probability function for each tissue is estimated as follows. For the construc-
tion of the training set, six images were selected from the data base including
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Fig. 1. Cross-section of the probability function images estimated by the kNN rule.
Brighter areas correspond to higher probabilities. (a) Grey level image. (b)-(d) Prob-
ability for vessel, background and bone respectively.

the most characteristic patterns in brain aneurysm CTA images. A total of 1830
points were manually picked from the images and labelled with one of these
three tissue classes: vessel, background or bone. A label and a feature vector is
associated to each point of the training set. This vector is based on the local
differential structure of the image at a small scale.

For a point x̂ in the training set, we associate the feature vector f(x̂) =
(Iσ, |∇Iσ|, λ1σ

, λ2σ
, λ3σ

) where Iσ represents the convolution of the image with
a Gaussian kernel of σ = 0.8 mm. The parameters λiσ

represent the eigenvalues
of the Hessian matrix of the image Iσ, ordered by increasing magnitude.

At this point, the kNN rule is used to estimate the probability functions
as follows. For a given voxel x, the feature vector f(x) is computed and the k
nearest feature vectors are found in the training set according to the Euclidean
distance. Then, the probability for a voxel of intensity i to belong to a tissue
class Cj , is computed from the formula

P (I(x) = i|Cj) =

∑
x̂∈Lj∩Nk(x) d(f(x), f(x̂))
∑

x̂∈Nk(x) d(f(x), f(x̂))
(1)

where Lj represents the set of points of the training set that belongs to the class
Cj , Nk(x) is the set of the k nearest neighbors and d represents the Euclidean
distance. In our approach we used k = 10. Figure 1 shows an example of the
probability functions estimated by the kNN rule. In the sequel, C0, C1 and C2

will stand for vessel, background and bone classes respectively.

2.2 Maximum a posteriori tissue classification

At this point, a MAP tissue classifier is used to obtain a partition of the image
domain into regions matching with vessel, background and bone. The probabil-
ities estimated from the kNN rule, provide some learned prior probability that
a particular voxel belongs to a certain class, P (I(x) = i|x ∈ Cj). All tissue
class are assumed to be equiprobable. The Bayes rule is applied to calculate the
posterior probability that a given voxel belongs to a particular class given its in-
tensity, P (Cj = cj |I(x) = i). The MAP classifier uses the maximum a posteriori
probability estimate after anisotropic smoothing [12] to obtain a classification of
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Fig. 2. Maximum a posteriori classification. (a) Cross-section of the grey level volumet-
ric image. (b) Cross-section with the MAP labels. Black corresponds to vessel tissue,
white to bone and grey to background.

the voxels of the image as follows

C∗
j = arg max

cj∈{C0,C1,C2}
P ∗(Cj = cj |I(x) = i) (2)

where P ∗ corresponds to the posterior probabilities after diffusion. This filter
has the property of being grey scale invariance. Therefore, the diffused posteri-
ors remain being probability functions. Applying anisotropic diffusion introduces
spatial coherence before the MAP decision by improving the classification re-
sults [15]. Figure 2 shows one example of the MAP classification. Voxels labelled
as vessel are used as initialization of the GAR method introduced in the next
section.

2.3 Geodesic active regions

The GAR model [11] combines the classical GAC model [2] with region-based
statistical information. The model incorporates region-based statistical informa-
tion into the classical energy functional. Therefore, in places where the gradient
is weak, regional information drives the evolution of the front thus being more
robust than GAC. Similar work including statistical information on the implicit
model was done in [16].

Given a partition of the image domain Ω = Ωin

⋃
Ωout, the inner region

descriptor is defined as kin(x) = −log(Pin(x)), where Pin is the probability that a
voxel x belongs to Ωin. An analogous definition holds for the outer region. In the
work of Paragios [11], region-based information is modelled by time dependent
Gaussian descriptors and the partition of the image domain is defined by the
front in evolution. However, the assumption of a unimodal parametric form for
the probability density function is not always justified in practical applications
like ours. In our experience, the distributions are not even Gaussian and the
intensity distribution of the vessel and the bone are overlapped. For this reason,
we propose to use the probabilities learned from the kNN rule. This probabilities
adapt to the distributions of the underlaying tissues and are time- and front-
independent. So Pin = P (I(x) = i|C0) and Pout = P (I(x) = i|C1) + P (I(x) =
i|C2).



The evolution can be expressed by the partial differential equation result-
ing from the gradient descent flow that minimizes the GAR energy functional
∂Γ (t)

∂t = ζ(kout − kin)−→N − η(gκ +∇g
−→
N )−→N with associated level set equation [10]

φt + ζ(kout − kin)|∇φ| − η(gκ|∇φ| + ∇g∇φ) = 0. (3)

For all the cases, the contour detector function g is e−ε||∇Iσ|| with ε = 10 and
σ = 0.8 mm. The parameters ζ and η are set equal 1.0. The Courant-Friedrichs-
Levy condition is used to compute the optimal time step for the equation. Less
than twenty iterations are enough to assure convergence of the algorithm.

3 Materials and methods

3.1 Clinical and computerized protocol

The study was performed on a data base of 39 brain aneurysms mainly located
in the Circle of Willis. Image acquisition was performed using an Helical Elscint
CT Twin scanner (Marconi; Haifa, Israel) with 120 kV/300 mA for the amplifier
tube, 1.2-mm collimation with an helical pitch of 1 and slice spacing of 0.65 mm.
Images were reconstructed on a 512 x 512 matrix with a square FOV of 20.8
cm yielding an in-plane resolution of 0.4 mm. A total of 140 ml of non ionic
contrast fluid was intravenously administrated (Omnitrast 300 mg; Schering,
Berling, Germany) at a rate of 3 ml/s, starting the scanning 20 seconds after
injection onset.

The manual quantification of the aneurysms was performed using 2D MIP
images and measuring tools provided by the console software Omnipro (Marconi;
Haifa, Israel). The clinical parameters needed for the planning of the endovas-
cular intervention are the maximum neck diameter, the maximum width and
maximum depth of the aneurysm. As it is customary in clinical routine, the
measurements were carried out along several projection angles and from those,
the neuroradiologist chose the view-angle producing maximal diameters.

Using the marching cubes algorithm, a 3D model of the aneurysm were recon-
structed from the zero-level set of φ. To make the computerized measurements
comparable to the manual gold standard, the models were rendered with a view-
point selected according to a similar criterion used to generate the MIP images.
Two points were manually pin-pointed in the 3D scene corresponding to the ends
of the measured magnitude in that angle. Measurements are then performed by
projecting this points into the camera plane.

4 Results

4.1 Examples

In Fig. 3 we show some examples of the segmentations of the most representative
aneurysms presented in our data base.
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Fig. 3. Some representative examples of the models obtained by the algorithm. (a)-
(d) Anterior Communicating Artery, Giant Anterior Communicating Artery, Posterior
Communicating Artery and Middle Cerebral Artery aneurysms, respectively.

4.2 Evaluation

Two experts carried out the manual measurements twice with enough delay
between sessions to consider them independent. The average of the manual mea-
surements is used as gold-standard and compared with the measurements ob-
tained by the model based approach. Bland-Altman analysis [1] is used as sta-
tistical method to obtain the repeatability of the manual method for each of the
two observers, the agreement between the observers and the agreement between
the manual and the computerized method. The results of the study are shown
in Table 1.

ObsI ObsII ObsI vs ObsII ObsI vs MB ObsII vs MB

Neck −0.07 ± 1.09 −0.51 ± 0.86 −0.03 ± 1.22 −0.47 ± 1.05 −0.44 ± 0.91
Width 0.94 ± 1.87 −0.34 ± 1.35 0.34 ± 1.91 0.23 ± 1.86 −0.11 ± 1.43
Depth −0.65 ± 2.41 0.18 ± 1.50 −0.70 ± 2.45 −0.69 ± 2.12 0.00 ± 1.55

Table 1. Results of the Bland-Altman analysis. The table shows mean ± SD of the
difference of the measurements in mm. ObsI and ObsII stand for each observer and
MB stands for the model-based technique.

5 Discussion and conclusion

Classic geodesic active contours approaches were unsatisfactory for segmenting
the cerebral vasculature from CTA and more sophisticated speed functions in-
troducing statistical information from the image were required to improve the
classical approach. Most of the approaches found in the literature use Gaussian
statistical information. Figure 4 shows an example of the tissue probability func-
tions modelled by Gaussian distributions. Comparing with Figure 1, it can be
appreciated that the probability of vessel is high in places of transition between
bone and background. The probability of bone in the interior of the aneurysm is
also high. Holes belonging to background inside the bone have high probability of
being vessel. The introduction of these features in the region-based term, makes
the model less robust and very sensitive to the parameters that have to be tuned
for each patient to compensate for the effect of the misclassification. The use
of non-parametric statistical information provides more accurate segmentations
with minimal sensitivity for the selection of the parameters.
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Fig. 4. Probability functions estimated by Gaussian models. Brighter areas correspond
to higher probabilities. (a) Grey level image. (b)-(d) Probability for vessel, background
and bone respectively.

The features used by the kNN rule are computed at a single scale. It would
seem that due to the nature of the object to be segmented, a multiscale approach
should provide better results. However, it was observed that results were worse
than using a single scale close to the voxel dimensions. This could be explained by
the fact that as the number of scales increases, the dimensionality of the feature
space also increases. This may deteriorate the performance of the classifier owing
to the peaking phenomenon [8]. We are working on improvements on the classifier
using a multiscale approach and dimensionality reduction strategies.

The aneurysms involved in the study had a mean size of 2.81 mm for the neck
diameter, 5.40 mm for the width and 6.44 mm for the depth of the aneurysm
with standard deviations of 0.84, 2.95 and 3.10 mm respectively. Results obtained
with the manual method show that both observers have a similar performance in
independent sessions. The repeatability study show a bias less than 1 mm in all
the cases. The standard deviation is larger in the measurements of the aneurysm
width and depth than in the neck diameter. The agreement study indicates also
a bias less than 1 mm in all cases. The standard deviation is also larger in the
measurement of the aneurysm width and depth than in the neck diameter. This
could be logical as minimal variations in the selection of the view angle can yield
large variations in the saccular dimensions of the aneurysm when measured on
the images. These variations are less significative at the neck due to the smaller
size of the measured magnitude and symmetry.

When comparing manual and computerized measurements, it can be observed
that the bias is, in the worst case, approximately of the order of a voxel (-0.69
mm). The standard deviations are lower in all the measurements. Therefore, the
computerized method has a high agreement with each observer separately than
the agreement achieved between the observers.

This study demonstrates the feasibility of using implicit deformable mod-
els combined with non-parametric statistical information to quantify aneurysm
morphology and obtain clinically relevant parameters. In summary, the technique
presented in this work will contribute to the computerized surgical planning of
coiling procedures by allowing more accurate and truly 3D quantification of brain
aneurysms.
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