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3D MRA Coronary Axis Determination Using a Minimum

Cost Path Approach

Onno Wink,"™ Alejandro F. Frangi,1 Bert Verdonck,? Max A. Viergever,1 and

Wiro J. Niessen'

A method is introduced to automatically find the coronary axis
based on two or more user-defined points, even in the presence
of a severe stenosis. The coronary axis is determined by finding
a minimum cost path (MCP) in a feature image in which the
tubular-like structures are enhanced. The results of the pro-
posed method were compared with manually drawn central
axes to estimate the accuracy. In 32 3D TFE-EPI acquisitions of
patients and volunteers, 14 right coronary arteries (RCAs),
15 left anterior descending arteries (LADs), and eight left cir-
cumflex arteries (LCXs) were manually tracked twice by two
operators to determine a reference axis and to assess the inter-
and intra-user variability. On average, the maximum distance to
the reference axis, based on only two user-defined points, is less
than 1.5 mm; the average distance is around 0.65 mm, which is
less than the average in-plane resolution. The results of the
method are comparable to those of the manual operators. Magn
Reson Med 47:1169-1175, 2002. © 2002 Wiley-Liss, Inc.
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In the last few years several magnetic resonance angiogra-
phy (MRA) acquisition methods have been introduced
which provide 3D images of the coronary arteries with
good signal-to-noise (SNR) and contrast-to-noise (CNR) ra-
tios (1-6). However, because of the tortuous nature of the
coronaries, it is not possible to capture a long stretch of
vessel in a single plane. Postprocessing is therefore re-
quired to obtain a proper visualization of the coronaries in
3D space. Although a large variety of approaches have
been proposed to facilitate the diagnosis of vessel seg-
ments (e.g., 7-15), relatively few have addressed the prob-
lems that occur in the case of a (severe) stenosis or in the
presence of image artifacts, in which case there is hardly
any image evidence to guide the algorithm. Especially
iterative tracking and region-growing procedures experi-
ence difficulties in these cases (see Fig. 1a).

Determining a minimum cost path (MCP) (e.g., 16—23)
between two or more user-defined points is an alternative
way to handle these situations (see Fig. 1b).

In this article it is investigated whether the latter ap-
proach, in combination with a filter that enhances tubular-
like structures, is suitable for tracking the coronary arteries
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automatically between two or more user-defined points.
The result of the MCP approach is an estimate of the
central coronary axis, which can serve as input for a sub-
sequent visualization and quantification procedure. The
method is applied to a number of 3D MRA images, and the
results are compared with those of two human operators to
determine the accuracy and applicability of the method.

METHODS
Image Acquisition

The images are acquired on a 1.5 Tesla Philips Gyroscan
ACS-NT MR scanner, using a navigator gated and cor-
rected ECG triggered ultra-fast 3D interleaved gradient
turbo field echo-echo planar imaging (TFE-EPI) sequence,
preceded by fat- and muscle-suppressing pulses. For a
detailed description of the imaging sequence, see Botnar et
al. (6). The images consist of 20 slices of 512 X 512 pixels,
and a reconstructed slice thickness of 1.5 mm. The field of
view (FOV) is either 360 or 370 mm. A total of 32 images
are acquired from both patients (29%) and volunteers
(71%). A three-point plan scan is used to align the center
plane in the final acquisition with the coronary artery of
interest.

Image Processing

Figure 2 shows the different phases of our technique in a
slice of the original 3D dataset, containing the right coro-
nary artery (RCA). To illustrate the strength of the ap-
proach, two stenoses are created artificially (Fig. 2a). First,
tubular structures are enhanced in the image using a spe-
cial-purpose multiscale eigenvalue filter (Fig. 2b). The out-
put of this filter is used in an MCP approach to determine
the coronary axis between two user-defined points (Fig. 2¢
and d).

Vessel Enhancement

First, the original data is filtered with a special-purpose
multiscale filter based on eigenvalue analysis of the Hes-
sian matrix (24-26). This filter is designed to highlight
tubular structures in the image and is capable of coping
with anisotropic voxels and vessels with varying width.
The idea behind the eigenvalue analysis of the Hessian is
to extract the principal directions in which the local sec-
ond-order structure of the image can be decomposed.
Since this directly gives the direction of smallest curvature
(along the vessel), the application of several filters in mul-
tiple orientations is avoided. The latter approach is com-
putationally more expensive and requires a discretization
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of the orientation space. The Hessian matrix H,, at a given
voxel is defined as:
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H, = Lyx Lyy Lyz [1]
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where o denotes the scale of the Gaussian kernel used for
regularizing the derivative operator involved in the com-
putation of the normalized second-order Gaussian deriva-
tives (27) of the original image I(x):
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The second-order derivative can be represented as a
probe kernel that measures the contrast between the re-
gions inside and outside the range (— o, o) in the direction
of the derivative (Fig. 3a).

The anisotropy of the dataset is handled by adjusting the
parameter vector o in each direction. For an ideal tubular
structure, the eigenvalues, when sorted in increasing mag-
nitude, will obey the following rules:

|)\1| ~ 0 [3]
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A, = Aj [5]
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FIG. 1. a: Situation in which an iterative
line tracker, based on local information,
does not know how to proceed in the
case of a severe stenosis or imaging ar-
tifact. b: The use of wave propagation to
find an MCP between a source node and
a target node does achieve an estimate
of the vessel axis.

The corresponding eigenvectors are given in Fig. 3b. The
eigenvector in the direction of the vessel corresponds to
the smallest eigenvalue A, while the eigenvectors that
correspond to the larger eigenvalues A, and \, span a plane
orthogonal to the vessel. Based on these observations,
Lorenz et al. (26) proposed a filter R(o):

0 ifN,>00r\;>0

R(o) = { Ay + A otherwise [6]

The response of the filter is expected to be maximum at

a scale that approximates the radius of the coronary. The

response at different scales can be combined by taking the
maximum response over a range of scales.

Minimum Cost Path

Based on two (or more) user-defined points in the coronary
of interest, an estimate of the central coronary axis is
determined using an MCP search (Fig. 2c and d). In the
MCP approach, as originally proposed by Dijkstra (28), the
image is treated as a grid of nodes, where every node/voxel
is connected to a number of neighbors, e.g., a six- or
26-node neighborhood. The transition cost of traveling
from node n to its neighbor n’ is given by the arc costs
a(n,n’), which corresponds to the reciprocal output of the
filter (R, see Eq. [6]) at the neighboring node n'. Based on
the source node s, a search process is initiated to find all
subpaths of minimum costs, which will continue until the
goal node g is found. This search process can be regarded
as the propagation of a wave front, initiated from a source

FIG. 2. a: Part of a slice from a 3D MRA dataset containing the RCA and two artificially created stenoses. b: The response of a 2D
eigenvalue filter. c: The pixels that are visited during a 2D bidirectional MCP search that is started in two user-defined points. d: The

(resampled) MCP found.
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FIG. 3. (a) Second-order de-
rivative of a Gaussian (inverse
Mexican Hat) at scale ¢ = 1,
and (b) the orientation of the
three eigenvectors of the Hes-
sian matrix when the corre-
sponding eigenvalues are
sorted in increasing absolute
magnitude.

s, over the voxels in the image. The intensities of the
voxels influence the velocity of the propagating wave. The
process ends if the wave front reaches the goal node g. The
path to the source node s can subsequently be retrieved by
tracing back the predecessors of the node that corresponds
to the goal node g. The approach is implemented via a
traditional MCP algorithm, wherein a priority queue (29) is
used to maintain the list of temporary nodes t, holding the
nodes that make up the wave front. For a detailed discus-
sion about obtaining MCPs with subpixel accuracy, see
Sethian (23).

Figure 2c displays an example of a stage in the MCP
approach. The pixels that are visited during the search
process are highlighted. In this example, a search process
is started in the source node s as well as in the goal node
g in order to speed up the computation time without
violating the result of the MCP (20). This bidirectional
search process is terminated when the two wave fronts
meet. The result is an MCP between the nodes s and g, as
shown in Fig. 2d.

If the gap between two portions of a vessel is too large,
the MCP may choose to find an alternative route, such as
the border of the cardiac chamber or other enhanced struc-
tures, as displayed in Fig. 2b. However, the cost of skip-
ping to another vessel-like structure requires two transi-
tions and, often, a long route. It can therefore only occur if
the other vessel is enhanced to the same extent as the
vessel of interest, and is situated next to the vessel of
interest. Moreover, the other vessel should be located near
the vessel of interest both before and after the stenoted
region. Otherwise, the cost of the path back to the goal
node will be too high, since it is very likely to pass through
non-enhanced structures in order to still arrive at this goal
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node. In practice, the stenotic region is generally neither
too large nor entirely blocked. The chance for an alterna-
tive route depends on the discriminative power of the filter
and on the difference in path length. In the following
section, the MCP in combination with the previously-
described vessel-enhancing filter (Eq. [6]) is applied to
determine the vessel axis of different lengths of the main
coronary vessels. Once the MCP is found, it can be used for
subsequent visualizations, as shown in Fig. 4, or as input
for additional quantification procedures (e.g., 9,30—-32).

Implementation Details

The cost images used in the MCP search are computed
using a multiscale filter as proposed by Lorenz et al. (26)
(Eq. [6]). The filter is applied both at a range of scales (o,
= 0.5 mm to o, = 1.5 mm, with linear steps of 0.1 mm),
and at a single scale, corresponding to an estimate of the
average radius of the coronary at hand, i.e., 1.0 mm for the
LAD and RCA, and 0.8 mm for the LCX. To speed up the
computation time, and to better cope with the relative
small vessel diameters, the actual convolution is per-
formed using a multiplication in Fourier space. Further-
more, the Gaussian second-order derivatives at the differ-
ent scales are precomputed in Fourier space. A bidirec-
tional search and a 26-node neighborhood is used in the
determination of the MCP.

Evaluation

To assess the performance of the method, the resulting
MCPs are compared with tracings of human operators.
First, the difference between the automated method and

c d |

FIG. 4. Examples of central axis-based visualizations based on (a) the original image, i.e., (b) curved reformat clearly displaying a larger
portion of the RCA by using the information from several slices, (c) straightened reformat, and (d) virtual fly-through.
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FIG. 5. a: The construction of an average path a based on the
trajectories of two manually determined paths a; and a,. The differ-
ences between the average path and the individual paths determine
the intra-operator difference. b: Example of comparing the MCP p,_
to the average path a. The MCP is found based on the first point a(0)
and the fifth sample point 5 mm away from the first point of the
average path a. The nodes p, (i) that make up this MCP are tra-
versed to find the maximum and average distance to the very
densely resampled version of the average path a. c¢: Example of
comparing two MCPs based on different begin- and end-points,
used to determine the robustness of the method to user initializa-
tion.

the individual operators is quantified and compared to the
differences between the operators to determine whether
the automated method can replace manual operators. Sec-
ond, the robustness of the method is tested by varying the
user-initialized points. Intra-operator variability can be
assessed since all manual tracings were performed twice.
Because it may be expected that performance of both man-
ual operators and the automated method depend on the
length of the tracked coronary axis, all evaluations are
carried out with multiple segment lengths. Although the
MCP search can be used to find a path through an arbitrary
number of user-initialized points on the vessel segment,
only the begin- and end-points of the segment are used in
the evaluation.

For every dataset the central coronary axis is manually
determined starting from the trunk of the ascending aorta
(Ao). A total of 14 RCA, 15 LAD, and eight LCX were
manually tracked on a Philips EasyVision workstation
running version R4.2.2.2. This procedure was repeated
after two weeks. As a result, four manually drawn paths
(a,, a,, by, b,) are acquired for every coronary in the
datasets. The two axes of every operator are averaged by
first determining their corresponding part and subse-
quently sampling these paths in an equal number of points
(Fig. 5a).

The origins of the resulting axes @ and b serve as starting
points for the MCP process, while the end-points are ob-
tained by resampling the average axes a and b every mil-
limeter. Thus MCPs are obtained for varying segment
lengths, which are denoted by p, and pj, respectively,
where the subscript n denotes the end-point number. For

Wink et al.

every cost path p, and pj , the average and maximum dis-
tances to the operator paths are computed (Fig. 5b and c):

. max(d(ps,(1),a) + max(d(ps,(i),b))
disty = 2 , 0=si=

(71

Y d(ps d(ps,().b
diStgyerase = E (bl a)J;V (Pu0:2) (8]

where d(] pan(i),a) denotes the minimum distance between
the i-th node of the MCP p, and a very densely resampled
average path a (see Fig. 5b), and N is the total number of
nodes in the MCP.

To determine inter-operator variation, the individual
axes of one operator are compared with the average axis of
the other (a and b, respectively, in Egs. [7] and [8]):

max(d(a,(i),b)) + max(d(a,(i),b)) +
max(d(b,(i),a)) + max(d(b,(i),a))

intery,, = 4 , 0=1

(9]

n teravemge

Y d(a,(i),b) + d(a,(i),b) + d(b,(i),a) + d(b,(i), a)

-2 aN

[10]

Here Nis the total number of nodes in the reference axis,
while d(a,(i),b) denotes the minimum distance between
the i-th sample point of the axis a, located at a distance of
imm from its origin, and a very densely resampled average
path b.

To determine the robustness of the automated method
with respect to the variation in the positioning of the
begin- and end-points, MCPs based on a and b are com-
pared:

Zd(pan(i),}f)z;) + d(pz;"<i),pa)' (1]

m Cpaverage = 2 N

Here d(p4(i),p;) denotes the minimum distance of the
i-th point in the MCP p,, based on the begin- and end-
points of the average path a, to a very densely resampled
version of the corresponding MCP p;, based on the average
path b (see Fig. 5c).

The average differences within the individual operators
(intra-operator) is computed as follows:

max(d(a(i),a;)) + max(d(a(i),a,)) +
max(d(b(i),b,)) + max(d(b(i),b,))

Intrag,, = 7 , 0=i=N

[12]
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FIG. 6. The results of the evaluation over all the datasets for the three coronary axes: RCA (top row), LAD (middle row) and LCX (bottom
row). The results are presented in two columns. The maximum measures are given in the left column, and the average measures are given
in the right. For the automated method, both the results based on the response of a filter using a range of scales (red lines) and at a single
scale (yellow lines) are shown. These should be compared to the inter-observer performance (green line) and variation (gray shaded zone
indicating region *o). It can be observed that the performance of the method is similar to that of the observers, except for the RCA. The
reproducibility of the method is also tested (brown: all scales; purple: one scale) by selecting different initialization points. In all experiments
the intra-method variability is consistently lower than the intra-observer variability (blue line). The number of coronary arteries used in the
analysis is given as a reference (black dots).
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Where d(a(i),a,) denotes the minimum distance between
the i-th sample point of the average axis a, located at a
distance of i mm from its origin and a very densely re-
sampled average path a,.

RESULTS

The results of the comparison of the automated approach
vs. the manual tracings are shown in Fig. 6.

The results are averaged over all the datasets for the RCA
(upper row), LAD (middle row), and LCX (bottom row). All
difference measures are given in millimeters. Since not all
coronary arteries are of equal length, the number of coro-
naries included in the evaluation decreases with longer
segments; the number of coronary arteries used in the
analysis is given by the black dots as a reference. It is
shown that for the automated methods the maximum dis-
tance to the observer’s axes is less than 1.5 mm, while the
average distance is around 0.65 mm, which is less than the
average in-plane resolution of 0.71 mm. It can be observed
that the performance based on the filter response at a
single scale is almost equivalent to the performance based
on the filter using a range of scales, with the exception of
the LCX after about 41 mm, for which the single-scale filter
performs better.

For the RCA, which is generally less tortuous than the
other coronaries, the difference between the two observers
is consistently smaller than the difference between the
automated method and the observers. This holds for both
the maximum distance and the average distance measures.
For the LAD and LCX, however, the inter-observer dis-
tance is of the same order as the performance of the auto-
mated methods.

Although different types of measures are used, it is clear
that the average differences between two MCPs (mcp,yerage)s
based on small changes of the user-provided begin- and
end-points, are significantly smaller than the average dif-
ferences between the users.

The average computation time needed to determine a
central axis estimate at a single scale is about 6 s on a
440 MHz Sun UltraSPARC with 1 gigabyte of RAM. The
fast majority of the computation time is devoted to the
enhancement of the vessels, which can be precomputed in
a practical situation. The computation of the bidirectional
MCEP itself is performed almost instantaneously.

DISCUSSION AND CONCLUSIONS

A method that combines a vessel enhancement filter and a
minimum cost path approach to determine the vessel axis
in the coronaries based on two user-defined points has
been presented and evaluated. Whereas the special-pur-
pose filter allows the use of multiple scales to capture
vessels of varying width, it is shown that for a properly
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selected single scale, i.e., corresponding to the expected
radius of the coronary artery of interest, performance of the
method is not degraded. For the LCX after about 41 mm,
the single-scale filter performed even better. This effect
can be explained by the fact that at the larger distances, the
posterior vein of the left ventricle runs almost parallel to
the LCX. In some of the acquisitions, this larger vein is
very bright, while the contrast in the LCX is low, resulting
in a higher filter output at a higher scale. As a result, the
MCP is likely to follow this vein for a while before it
continues through the actual LCX. From these findings it
may be concluded that to speed up the vessel enhance-
ment filtering a single scale may be used for the coronaries,
provided that the proper scale is selected.

A comparison of results from the method with those of
operators shows that the difference between observers is
similar to the difference between the method and the ob-
servers for the LAD and LCX. The method performed
slightly worse for the RCA. However, as expected, the
automated method is more robust, as variations induced
by small changes in the positioning of the begin- and
end-points is considerably smaller than intra-operator
variability.

A drawback of the traditional MCP approach is that the
resulting path is obtained by making discrete steps from
one voxel to the other. A smoother representation of the
vessel axis can be obtained by reconstructing the original
dataset or the filtered version at a higher resolution. An-
other alternative is to obtain a subpixel accurate path
through a gradient descent from the goal node back to its
source node using the cumulative costs in the nodes (23).
These modifications may further improve the approach.

Due to the limited number of patients in this study, the
evaluation of the method is biased towards the nonse-
verely stenoted coronaries. However, in practice, the le-
sion is generally neither too large nor entirely blocked. The
proposed method has the potential to find an estimate of
the central vessel axis, even in the case of a severe stenosis,
although it may choose an alternative route if the gap is too
large and another vessel-like structure is nearby.

Once a path is found, it can provide direct visualization
of the coronary arteries over a long stretch of vessel. Fur-
thermore, it can be used as a preprocessing step in the
quantitative analysis of vessel morphology. Although the
evaluation presented in this work is based on images that
were acquired using the same scanning protocol, the ap-
plicability of the proposed method is not limited to these
images. The method has the potential to be applied to
different types of acquisitions, such as black-blood scans
and regular contrast-enhanced MRA of the coronaries, and
other vascular structures. Consequently, a feature extrac-
tion based on eigenvalue analysis, followed by an MCP
approach to determine the central vessel axis, offers great
potential for the visualization and analysis of vessels in 2D
and 3D images.
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