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Abstract

T-wave alternans (TWA) is considered as an index

of susceptibility of sudden cardiac death. The Phy-

sionet/CinC challenge 2008 encourages teams to automat-

ically detect and quantify the magnitude of TWA in every

record of a given database. A reference ordering based on

all entries submitted to the challenge is used for evaluation

of algorithms. We participated in the challenge using a

multilead analysis scheme that combines principal compo-

nent analysis with the Laplacian likelihood ratio method.

TWA was detected in 41 records, and a final score of 0.633

was obtained.

In this study, the effect of several design parameters in

the estimation of TWA amplitude is discussed, and the im-

portance of measuring additional TWA parameters is em-

phasized.

1. Introduction

TWA is defined as a consistent fluctuation in the repo-

larization morphology on an every-other-beat basis. It is

presently regarded as a promising index of susceptibility

to sudden cardiac death [1].

TWA amplitude is in the range of microvolts, and can

be even below the noise level, making its detection a diffi-

cult task. Several signal processing methods exist to detect

and estimate TWA [2]. The most widely used techniques

are the spectral method [3] and the modified moving av-

erage method [4]. Alternative techniques are the com-

plex demodulation method [5] and the recently proposed

Laplacian likelihood ratio method (LLR) [6]. The main

drawback of existing techniques is either their sensitivity

to the presence of nonalternant components with high am-

plitude, or their low sensitivity to low-level TWA [1, 2].

Furthermore, some of those techniques measure TWA am-

plitude, but do not estimate the TWA waveform. An accu-

rate waveform estimation is desirable because, in addition

to the presence and magnitude of TWA, the distribution of

TWA within the ST-T complex has been shown to indicate

arrhytmic risk [7].

The Physionet/CinC challenge 2008 encourages partic-

ipants to develop methods for automatic TWA quantifica-

tion in a set of 100 ECG records. Results submitted by all

participants are aggregated to derive a reference ordering,

and then the agreement between each participant and the

reference ordering is evaluated by calculating the Kendall

rank correlation coefficient [8]. In this paper, we describe

our participation in the challenge, using a previously de-

veloped multilead TWA analysis scheme [9].

2. Data sets

2.1. Challenge database

This database, available in www.physionet.org, contains

100 ECG records sampled at 500 Hz with an approximate

duration of two minutes. QRS annotations for all records

are provided. 32 of the 100 records are synthetic sig-

nals, generated with six model ECGs and with calibrated

amounts of artificial TWA. The other 68 records belong to

patients with different conditions, as well as healthy con-

trols. 72 of the 100 records contain the standard 12-lead

ECG, 12 records contain only 3 leads, and 16 records con-

tain only 2 leads.

2.2. STAFF-III database

A set of 97 control records of the STAFF-III database

[6] was selected to calculate the detection threshold for the

TWA analysis scheme as described in Section 3. These

records are sampled at 1 kHz, their duration is approxi-

mately five minutes, and they contain nine standard leads,

from which only the eight independent leads were consid-

ered. According to previous studies [6], no TWA episodes

are present in these signals.
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3. TWA analysis

The block diagram of the analysis scheme is shown in

Fig. 1. It consists of five stages: signal preprocessing, sig-

nal transformation with PCA, TWA detection, signal re-

construction, and TWA estimation.

The ECG signal is preprocessed as follows. Baseline

wander is removed using a time-variant filtering technique

[10]. The signal is then decimated to obtain a sampling

frequency of Fs = 125 Hz, and low-pass filtered with a

cut-off frequency of 15 Hz. On each beat, an interval of

300 ms is selected for TWA analysis (ST-T complexes).

The starting point of each ST-T complex is located within

a certain time from the QRS fiducial point, depending on

the heart rate (HR): 70 ms if HR ≤ 100 beats per minute

(bpm) and 60 ms if HR > 100 bpm.

After the preprocessing stage, the signal is processed

with a sliding window. In the case of 12-lead ECGs, only

the eight independent leads (V1-V6, I, II) are considered

for TWA analysis. Let K be the number of beats in the

analysis window, N the number of samples of each ST-T

complex, L the number of leads, and xk,l(n) the ST-T com-

plex of the k-th beat and the l-th lead. Each ST-T complex

can be modeled as

xk,l(n) = sl(n) +
1

2
al(n)(−1)k + vk,l(n) n = 0 ...N − 1

where sl(n) is the background ST-T complex, which is pe-

riodically repeated in each beat, al(n) is the alternans wave-

form, and vk,l(n) is additive random noise. For each beat k,

complexes from all leads are put together into a matrix Xk

Xk =
[

xk,1 . . . xk,L

]T
(1)

The nth column of Xk contains the amplitudes of the L

leads at a given sample n of the kth beat. The Xk matrices

are then concatenated to form the data matrix �

� =
[

X0 X1 . . . XK−1

]

(2)

The lth row of � contains the concatenated ST-T com-

plexes corresponding to the lth lead.

A detrending filter is then applied to � to cancel the

background ST-T complexes

x
′

k,l = xk,l − xk−1,l, k = 1 ... K − 1

The resulting matrix�
′

has the same structure as� (this

time with K − 1 beats), that is, the lth row contains the

concatenation of the detrended complexes corresponding

to the lth lead. PCA basis is then calculated from matrix

�
′

. The detrended signal �
′

is a zero-mean random pro-

cess with a spatial correlation matrix R�′ = E{�
′

�
′T }. In

practice, R�′ is replaced by the sample correlation matrix,

defined as

R̂�′ =
1

(K − 1)N
�
′

�
′T
. (3)

To obtain the whole set of L principal components of �
′

,

the eigenvector equation for R̂�′ must be solved

R̂�′Ψ = ΨΛ (4)

where Λ denotes the eigenvalue matrix and Ψ denotes

the eigenvector matrix. Matrix Ψ defines an orthonormal

transformation, which is applied to the original data �

� = ΨT
�. (5)

The lth row of � contains the lth principal component of

� (denoted as the lth transformed lead).

After PCA transformation, TWA detection is performed

in the transformed data. The Generalized Likelihood Ratio

Test (GLRT) for Laplacian noise is applied to each trans-

formed lead (rows in �) as proposed in [6]. To decide

whether alternans is present or not, the resulting value of

the test is compared to a threshold γ. The result of this

lead-by-lead detection is denoted as dl: dl = 1 if TWA is

detected in the lth transformed lead, and dl = 0 otherwise.

The overall TWA detection is positive if TWA is detected

at least in one transformed lead (‘OR’ block in Fig. 1).

The value of the threshold is calculated from the control

records described in 2.2, considering a probability of false

alarm PFA = 0.01. To do so, control signals are processed,

and for each beat the maximum GLRT value of the L leads

is kept. γ is chosen so that it is exceeded only by 1% of

those GLRT values.

After TWA detection, a new signal in the original lead

set is reconstructed. This is necessary because TWA must

be measured in the original leads. A diagonal matrix is

defined from the lead-by-lead detection as

� =

























d1 0

. . .

0 dL

























(6)

and the basis in Ψ is truncated,

ΨTR = Ψ�. (7)

Matrix ΨTR has zeros in columns corresponding to leads

without TWA. A reconstructed signal is then obtained as

�̃ = ΨTR�. (8)

The reconstructed data matrix �̃ consists of the concate-

nation of the multilead single-beat matrices X̃k:

�̃ =
[

X̃0 X̃1 . . . X̃K−1

]

(9)

where

X̃k =
[

x̃k,1 . . . x̃k,L

]T
(10)

with x̃k,l corresponding to the reconstructed ST-T complex

of the kth beat in the lth lead. When no detection is ob-

tained, �̃ = 0.
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Figure 1. Block diagram of the analysis scheme

Then, the Maximum Likelihood Estimation (MLE) for

Laplacian noise is applied to the reconstructed data as de-

scribed in [6] to estimate the TWA waveform and ampli-

tude. On each lead, TWA amplitude is calculated as the

root mean square (RMS) value across the estimated TWA

waveform â(n)

Vl =

√

√

√

1

N

N−1
∑

n=0

â2
l
(n) (µV). (11)

A final TWA amplitude estimation Valt is calculated as the

maximum Vl in the L leads.

4. Results

An entry was submitted to the Physionet/CinC chal-

lenge 2008 applying the analysis scheme previously de-

scribed with an analysis window of K = 32 beats. 82 TWA

episodes were detected in 41 records (52 episodes in 23

synthetic records and 30 episodes in 18 real records). The

amplitude estimation for each record was taken as the max-

imum amplitude of all episodes found in that record. Fig.

2 shows the boxplot of the estimated amplitudes in real

and synthetic records. The final score in the challenge was

0.633 in a range of [-1, 1].

Shortly after the deadline of the challenge, the reference

TWA amplitudes added to synthetic records were pub-

lished. In this synthetic set, the sensitivity of our scheme

was 76.7%, detecting 100% of episodes with amplitudes >

6 µV. Fig. 3 shows the estimated amplitudes vs. the refer-

ence values. The relationship between our measurements

and the references is approximately linear, the slope of the

straight line fit is 0.4 and the correlation coefficient is 0.78.

Two measurements, corresponding to records twa28 and

twa69, differed significantly from the reference. After vi-

sual inspection, they were considered erroneous measure-

ments caused by the inestability of QRS annotations, and

they were excluded from the linear fit calculation.

In addition to TWA amplitudes, we also measured the

duration of the episodes detected in real records, and their

onset heart rate (OHR). The duration was 17 ± 31 seconds

(mean ± one standard deviation), and the OHR was 111

± 23 bpm. Fig. 4 shows the cumulated histogram of the

OHR.
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Figure 2. Boxplot of estimated TWA amplitudes in real records (left)

and synthetic records (right)

5. Discussion and conclusions

The sensitivity of the analysis scheme is mainly deter-

mined by the detection threshold γ. Noise affects both

TWA detection and estimation, so γmust be carefully cho-

sen to avoid false detections and obtain reliable TWA mea-

surements, while maintaining a high sensitivity. This com-

promise exists for all TWA detection methods, although in

some cases it is not adequately stressed. In our study, γ

was statistically calculated from a set of reference signals

to obtain a theoretical probability of false alarm of 1%. In

practice, the sensitivity in the synthetic dataset was high

(76.7%) and no false episodes were detected.

According to the results of the synthetic set, our analysis

scheme underestimates the amplitude of TWA. This could

be due to the way of defining the TWA amplitude. We

calculate the amplitude Valt along the entire ST-T complex

(see (11)), and this measure is lower than the amplitude

at the maximum of the TWA waveform, which might be

another usual way of defining the TWA amplitude. More-
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Figure 3. Scatterplot of TWA amplitudes in synthetic records. Outliers

shown with asterisks. Straight line fit shown in black
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Figure 4. Cumulated distribution of the onset heart rate of TWA

episodes detected in real records

over, as shown in a previous study [11], the truncation that

is carried at the reconstruction stage may increase the bias,

because only a subset of transformed leads is used to re-

construct the signal, and the discarded leads may still con-

tain a small alternant component. There exists a trade-off

between bias and variance of the estimation. A higher bias

is compensated by a lower variance, making the study of

the temporal distribution of TWA along the ST-T complex

more reliable.

In addition to TWA amplitude, two more parameters

need to be evaluated in a TWA analysis. One of them is

the duration of the episodes, which has not been consid-

ered in the challenge. The minimum duration that the sys-

tem can detect is mainly determined by the length of the

analysis window. The other important parameter is the on-

set heart rate (OHR), because it provides additional prog-

nostic value in risk stratification [1]. A cut-off point of

110 bpm is usually considered to distinguish between nor-

mal and abnormal TWA tests. In the real records set, 22

episodes (73.3%) belonging to 16 records (88.9%) have an

OHR < 110 bpm, and therefore they would be considered

abnormal.

The database and the TWA measurements obtained as

a result of the Physionet challenge 2008 will be useful to

evaluate TWA detectors from a methodological point of

view. However, the clinical utility of the database as a

”gold standard” is limited, since there is no information

available about the follow-up of the patients.
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