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Nonlinear Distortion Cancellation Using LINC
Transmitters in OFDM Systems

Paloma Garcia, Alfonso Ortega, Jesis de Mingo, Member, IEEE, and Antonio Valdovinos, Member, IEEE

Abstract—The LInear amplification wusing Nonlinear
Components (LINC) technique is a well-known power amplifier
linearization method to reduce out-of-band interferences in a
nonconstant envelope modulation system, such as Digital Video
Broadcasting (DVB) system, which is based on a very sensitive
to nonlinear distortions OFDM modulation scheme. The major
drawback of LINC transmitters is the inherited sensitivity to gain
and phase imbalances between the two amplifier branches. In
this paper, a novel full-digital base band method, which corrects
any gain and phase imbalances in LINC transmitters mainly
due to the un-matching of the two amplifier paths, is described.
Amplifiers are characterized by a level-dependent complex gain
using a memoryless model. The method uses adaptive signal
processing techniques to obtain the optimal complex coefficients
to correct gain and phase imbalances. Its main advantage is
the ability to track the input signal variations and adapt to the
changes of amplifier nonlinear characteristics. Other effects
are included in the analysis such as quadrature modulator and
demodulator impairments. A computer simulation has been
carried out to verify method functionality.

Index Terms—Adaptive system, amplifier linearization, non-
linear distortion, ortogonal frequency-division multiplexing
(OFDM).

1. INTRODUCTION

HE NEW digital audio broadcasting (DAB) and digital

video broadcasting-terrestrial (DVB-T) are emergent
telecommunication systems that are based on a multicarrier
modulation as the OFDM schemes (Orthogonal Frequency
Division Multiplexing). An OFDM signal consists of a sum
of subcarriers that are modulated by using phase shift keying
(PSK) or quadrature amplitude modulation (QAM) [1]. The
OFDM transmission is an efficient way to deal with multipath
and its implementation is less complex than an equalizer. It
is also robust against narrowband interferences, because such
interferences affect only a small percentage of the subcarriers.
Another advantage of the OFDM system is that the digital
transmitter and receiver can be efficiently implemented using
the Fast Fourier Transform (FFT) algorithm. However, one of
its drawbacks is its sensitivity to nonlinear distortions due to
its greatly variable envelope and high peak to mean envelope
power ratio values [2]-[4]. As a result of nonlinearity effects
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(mainly from power amplifier), the transmission spectrum
is expanded into adjacent channels, an effect known as ACI
(Adjacent Channel Interference). One way to achieve linear
amplification is by using a class A power amplifier working
with a high backoff, which corresponds to moving the operating
point of the amplifier to the linear region. However, it implies
low power efficiency. High power efficiency can be obtained
with class AB power amplifiers, but they show more nonlinear
characteristics. In order to achieve both spectrum and power
efficiency, several classical linearizing techniques for power
amplifiers have been proposed in the technical literature. These
techniques are usually categorized as Feed-forward, Feedback,
Predistortion and LINC transmitter. According to the recent
literature [5]—[8], [17], the predistortion technique has been the
more useful scheme in order to reduce the effects of nonlinear
distortion on the performance of OFDM systems. In this paper
the authors have proposed and analyzed an adaptive digital
LINC transmitter structure. LINC is an acronym for linear
amplification with nonlinear components. A schematic diagram
of a LINC transmitter is depicted in Fig. 1. Its major draw-
back is the inherited sensitivity to gain and phase imbalances
between the two amplifier branches [9], [10]. Several authors
have considered different methods to correct the imbalances in
LINC transmitters [11]-[14], but the novel method presented
here uses adaptive signal processing techniques. It is carried
out in base-band and is full-digital.

II. LINC TRANSMITTER

One of the reasons that the LINC transmitter has not been
widely used, is the difficulty to achieve the accurate gain and
phase matching required between the two paths. Errors in gain
and/or phase matching will cause incomplete cancellation of un-
wanted elements in wideband phase modulated signals. As a re-
sult, a large number of unwanted spurious products appear in the
output spectrum, as observed previously [9], [10], [12], [15].

The effect of gain and phase imbalances between the two
paths may be analyzed as follows. The source signal may be
written in complex general format as [15], [20]

s(t) = c(t)el?® 0<c(t) < Cmax- (1)
The source signal is separated into two constant-envelope sig-
nals by a Signal Component Separator (SCS) as shown in Fig. 1.
These signals are calculated as

s =" e, )
) =" e ). @
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Fig. 1. Schematic diagram of the LINC transmitter.

Where e; (t) is a signal that is in quadrature to the source signal

3)

Thus

and

s (t) = s1(t) + 52 () [si (@) =ls2 (D). 4

The amplifier of each path is characterized by a level-dependent
complex gain, with an output signal in each path given by

So1 () =1 (t) - G1(lvr (B)])  s02 (1) = v2(t) - G2 (Jv2 (1)]) -

Q)
Where vy (t) and v, (t) are the baseband representation of the
instantaneous complex envelope amplifier input signal in each

path.
Therefore, if the D-to-A converters and quadrature modu-
lators are supposed to be ideal, that is, s (¢) = vy (¢) and

s2 (t) = w2 (t), and both signals s, (¢) and s,z (t) are prop-
erly added in phase, the output signal in complex format then
becomes

5o (t) =501 (t) + o2 (t)
=s1(t) - G1 (Jo1 (B)]) + s2 () - G2 (Jv2 (1)])
t

)|
) + G2 (lv2 (D)])

(. Gl 0Dt
o). GO =Go(m)

2

The second term in (6) implies that there is an unwanted residual
signal due to imperfect cancellation (it tends to zero as the gain
and phase matching are perfected). The term introduces inter-
fering power in the adjacent channel limiting the spectrum effi-
ciency of the system.

The aim of this method is to reduce the factor [G (|v1(¢)|) —
G2 (|v2(t)])] as much as possible. The method is based on adap-
tive signal processing techniques and its main advantage is to
track input signal variations and possible changes due to tem-
perature variations, amplifier bias and component aging, among
others.

III. CORRECTION METHOD MODEL

A schematic diagram of the simulation model is depicted in
Fig. 2. The source signal is separated into the two constant-en-
velope signals, given in (2), by an SCS. These signals are multi-
plied by different complex coefficients, one for each branch (K
and K5). These coefficients are computed and continuously up-

dated to reduce the Adjacent Channel Interference by means of
an adaptive algorithm. This algorithm needs a reference of the
output signal to update the complex coefficients. A feedback
signal, r (¢) is obtained by means of a downconversion process
of the output power amplifier signal s, (t), where 1/G, is the
downconversion gain, including the output coupler gain. This
downconversion gain allows adjusting the range of signal values
to the quadrature demodulator input and it is defined as the mean
of the amplifying branches gain.

The adaptation criterion of the algorithm is to minimize the
mean-squared-error. The error signal defined by (7) is the differ-
ence between the source signal, s(¢), and the feedback signal,

r(t).

e(t) =s(t) —r(t). @)
The feedback signal can be written as
o (t)
r (t) - GL
s1(t)-K1-Gy (|vy (£)])+s2 (1) Ka-Ga (Jv2 (1)])

= B (8)

Substituting (4) and (8) into (7), the error signal can be written
as the addition of two error signals, e;(t) and es(t).

e(t) =er(t) + ez (1) ©

er (1) = s () - 21O IL Gl O) g
Gt

s (1) = 5o (1) — 21 LI Qe @Dy

Where ideal D-to-A, A-to-D converters, quadrature modula-
tors/demodulator and a null loop delay, 7, are assumed.
The cost function to minimize is defined as

J:E[|e(t)|2}. (12)
Where E[.] denotes the statistical expectation operator.

For simpler notation, in following formulae, G (|v; (¢)|) and
G2 (|vz (t)]) will be denoted as G and G5.

The gradient of the cost function is calculated as

aJ aJ
= 7 ith K,, =K K1 =1,2.
Ve = e gk, W Ka = K j K n=1,
13)
Where Kr,, denotes the real part and K'i,, the imaginary part of
K,.

For the cost function J to attain its minimum value, all the
terms of the gradient must be simultaneously equal to zero.
Computing the cost function (12) gives

J=E[et)-e" ()] = Elei(t)-ei ()] + Elea(t) -1 (1)]
+E[er(t)-ex(t)] + Elea(t) ez ()] (14)

The partial derivatives with respect to K, and K1, are calcu-
lated to obtain the gradient of the cost function defined by (13).
Approximating the terms with derivation variable K, toward
zero in the work region of the amplifier, finally we obtain
. G
Vi, Jr—=2-Ee(t) s, (t) =2 n=1,2.

Gy
The cost function depends on two signals, the error signal, e(t)
available in the digital processing block and the signal defined

5)
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Fig. 2. Simulation model.

by [sk (t) - (G} /G3)]. This last signal is not available in the
proposed model, but according to the downconversion gain def-
inition, we can use the approximation G,, =~ G, and thus the
expression (15) can be written as

Vi, J~==2-Ele(t) s (t)] n=1,2.

n

(16)

Therefore, using the instantaneous estimate of the gradient, the
updated value of the adaptive coefficient at time m + 1 is com-
puted by using the simple recursive relation

K,(m+1)=K,(m)+un-e(m)-s;(m) n=12. (17)

Where the positive real-valued constant y,, (step-size), controls
the speed of convergence and the misadjustment (final excess
error) of the algorithm.

IV. SIMULATIONS
A. OFDM Modulation

The source signal for simulations was an OFDM signal, sim-
ilar to the OFDM signal defined in the DVB-T standard [16],
with the following parameters:

. 2 K mode:1705 active subcarriers

. Subcarrier Spacing: 4.464 KHz

. Useful Symbol Duration: 224 us

. Constellation: 16 QAM
The modulated OFDM signal during a symbol can be expressed
as follows

Kmax
s (t) — pi2nfet Z C0.0.k ejzwk'(t—A)/T,,,
k=Kmnin
Kmax Kmin
with k' =k — % (18)

T, is the inverse of the carrier spacing, A is the duration of the
guard interval, k denotes the carrier number, f. is the central
frequency of the RF signal and cg o, is a complex symbol for
carrier k.

There is a clear resemblance between this and the inverse Dis-
crete Fourier Transform (DFT)

N-1 )
> X [k] eI, (19)
k=0

x[n]:%

K i)
>
e P Ao i
s(0) Component 5(0) al
=% Separator
p (t)
I
(SCS) S\ I\ } 2 Quadrature
l/ D/A Modulator
K, (1)
quvz(t])
e(t
& [ €—{Quad
> o [ o Je]

/G,

Since various efficient Fast Fourier Transform algorithms exist
to perform the DFT and its inverse, it is a convenient form of
implementation to use the inverse FFT (IFFT) in a DVB-T
modulator to generate N samples z[n] corresponding to the
useful part, T, long, of each symbol. The guard interval is
added by taking copies of the last NA/T,, of these samples
and appending them in front. This process is then repeated for
each symbol in turn, producing a continuous stream of samples,
which constitutes a complex baseband representation of the
DVB-T signal. A subsequent up-conversion process then gives
the real signal s(t¢) centred on the frequency, f..

B. Amplifier Model

The amplifier is characterized by a complex gain using a
memoryless model, which depends on the input signal level.
A common method to model power amplifiers taking into
account nonlinearities with memory is to use a Volterra se-
ries representation. For most amplifiers, where the modulation
bandwidth is much less than the carrier frequency, the memory
in the nonlinearity is small enough to be neglected, and the
Volterra series can be simplified into a simple power series with
complex coefficients [18]. The complex gain of the amplifier
is extracted from AM-AM and AM-PM characteristics of a
class AB amplifier. The Class AB power amplifier design is
simulated using the model of the LX802 LDMOS transistor
from Polyfet [27] (with a driver) at 600 MHz (50 €2 system). A
polynomic regression is used to model the amplifier complex
gain of each path.

G (|0 (B)]) = My (Jo(t)]) - /P OD = 1,2
M, (Jv(t)]) =192.30 - 1 + 91.83 - o - [v (2)]
—736.80-ay, 3-|v (£)|° + 907.01 - ayy 4 - v (2)]°
—490.95-a,, 5 - [0 ()| +124.72 - a6 - v (8)]°
— 1211 - a7 - o (8)]° 1)
— 1.9758 - 1 + 0.9181 - B0 - |v (1)

—2.0892- B3 - |0 (B)*+1.7987 - B - [v (1)]?
—0.7584 -5 - [0 (£)[*+ 0.1557 - Br6 - |0 ()]
—0.0124 - Bz - [0 (®)]°. (22)

(20)

@, (lv (1)) =
)
)
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The amplifier in path 1 is characterized with the parameters
a1, 31,5 equal to 1. The amplifier in path 2 is modeled mod-
ifying appropriately factors cv j and 35 ; to simulate the inclu-
sion of gain and phase imbalances between both amplifying
branches.

Fig. 3 shows the AM/AM and AM/PM characteristics (nor-
malized to the 1 dB compression point) of the designed class AB
power amplifier and the corresponding calculated polynomic re-
gression model, which is used to simulate the amplifier of path 1.

The downconversion gain was simulated as an estimation of
the inverse of the total equivalent linear gain of the amplifier
stage (mean of the equivalent linear gain of the amplifier in path
1 and the one in path 2).

C. Transmit Signal Power Spectrum Performance

Due to the coexistence of many digital and analog broadcast
signals in the whole service bandwidth, the requirements re-
spect to the spectrum level outside the channel bandwidth are
determinated in the standard DVB-T through spectrum emis-
sion templates. For example, the spectrum level at frequency
offset of 4.2 MHz from the center frequency is at least 36 dB
lower than the center spectrum level. Fig. 4 shows the normal-
ized power spectral density (PSD) of the output power ampli-
fier signal, S, (f) for different values of Output Power Back-off
(OBO) with a single amplifying branch, that is, without a trans-
mitter LINC structure and for a 16-QAM modulated OFDM
input signal operating at a sampling frequency of 29.25 MHz.

According to Fig. 4, the requirement of an attenuation of
36 dB in 4.2 MHz is obtained for OBOs larger than 10 dB,
which implies low power efficiency. The proposed power am-
plifier (with a driver) is designed to optimize the 1 dB compres-
sion output power (Pyut_1 a = 45.4 dBm), resulting its Power
Added Efficiency (PAE), n, = 60%, where

_ Prr_our — Prr_IN

=

23
Prc (23)

With a single amplifying branch the total efficiency is [28], [29]
Ntot = Ta * Tlm 24)

where 7),,, is the modulation scheme efficiency.
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(a) AM/AM and (b) AM/PM characteristics of the designed class AB amplifier and the corresponding polynomic regression model.
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Fig.4. Normalized power spectral density of simulated amplifier output signal
for different values of OBO (with a single amplifying branch).

The proposed amplifier has a PAE value equal to 17% at
10 dB OBO related to the 1 dB compression point, which sup-
poses a great efficiency reduction to achieve the required Adja-
cent Channel Protection (ACP).

To realize the full power efficiency potential of LINC tech-
nique, not only the PAs but also the recombination process must
be highly efficient. Typically, a hybrid combiner, with the loss
on power efficiency due to the wasted at heat in the load match,
is used. The possibility of reducing this drawback effect by
recycling otherwise wasted energy using a RF-DC converter
to partially recover the wasted energy has been studied [30].
Other combiners proposals are based on the Wilkinson com-
biner without isolation resistor [31]. Some studies about the ap-
propriate susceptance presented to the power amplifier in this
scheme, are described in [32], [33]. This susceptance value can
be automatically adjusted as proposed in [34]. Taking into ac-
count the combiner efficiency, the total system efficiency can be
written as

Titot = Tla * TIim * Tlc- (25)



88

0 St P I,
e S
. g=1.8dB Sof) with amplitude imbalances
between amplifying branches
— g=1.4dB
g 20 r 148
= g=2dB 2419
= |g=0.6 dB
g, ‘ogi=044 dB .
B 40
6 . .
1 = |
& g=0.2dB : .
9] . .
g 60 s '
s ! :
.
3 : H
g $ g-0aB %
E & § 9 )
P-4
-100
-15 -5 5 15

Offset from Centre Frequency (MHz)

Fig.5. Normalized power spectral density of simulated input S( f) and output
S, (f) with several gain imbalances (0 < g; < 2 dB) and without phase
imbalance in the second branch of a LINC transmitter (without a correction
method).
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imbalance in the second branch of a LINC transmitter (without a correction
method).

nm and 7. are not the objective of this paper, since they have
been widely treated in above referenced works.

As mentioned before, in order to increase the power effi-
ciency, an adaptive LINC transmitter scheme is proposed. If
an ideal transmitter LINC structure is applied, that is, the two
amplifying branches are equal, the nonlinear distortion cancella-
tion is almost perfect, but in a realistic situation, where there are
gain and phase imbalances between both amplifying branches,
the power spectral density of the output power amplifier signal
So(f) is degraded as Figs. 5 and 6 show.

In all the following presented results a 5 dB OBO at the output
combiner is applied.

Figs. 5 and 6 illustrate the effect of gain and phase imbalances
and the need for a method to achieve gain and phase matching as
presented in this paper. It can be seen that a slight gain or phase
imbalance between both amplifying branches worsens the LINC
transmitter performance.

Fig. 7 compares the normalized input and output power spec-
tral density with and without the presented adaptive correction
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Fig. 8. Received signal constellation diagram (normalized) (a) without
imbalances correction method (b) with the proposed correction method.

method and using a 1.5 dB gain imbalance and a 5° phase im-
balance between both amplifying branches.

As it can be seen in Fig. 7, the Adjacent Channel Interference
is reduced after applying the correction method with accurate
gain and phase matching between the two paths.

The Error Vector Magnitude (EVM) is another important
transmission requirement in digital communication systems.
The effects of the gain and phase imbalances on the vector error
may be analyzed as follows

EVM = +/(R? 4+ M?) — 2RM cos () (26)
where R is the magnitude of the ‘ideal’ vector, M is the magni-
tude of the measured vector, and «. is the phase error between
them. The measured vector magnitude, M, is composed of the
‘ideal’ magnitude, R, plus a component resulting from the gain
error present in the system, G.. Therefore, (26) can be written
as

EVM = \/(R + (R+ Ge)z) —2R(R+ G.)cos (ae).

27

The 16-QAM received signal constellation without and with
the correction method for a LINC transmitter are depicted in
Fig. 8(a) and (b), respectively. The EVM improves after the pro-
posed correction method is applied. (EVM =~ 8% without the
correction method, EVM =~ 3.5% with the correction method)
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Fig. 10. Value range of adaptive coefficients, i'; and K.

Using this method, the speed of convergence can be mea-
sured by analyzing the time evolution of the mean-squared-
error. Taking into account that the speed convergence depends
on the step size parameter, 1, this parameter has been chosen in
order to reduce the ACI value as far as possible. As Fig. 9 shows,
the convergence time can be considered lower than 0.5 us, that
is, much lesser than the symbol time, 280 us. Therefore, this
method can be suitable for real time implementation.

We have also analyzed whether the value range of adaptive
coefficients is suitable for its implementation in a digital pro-
cessor. Fig. 10 shows the value range of the real and imagi-
nary part of the coefficients, K; and K». It demonstrates that
the value range of both adaptive coefficients along time is de-
limited and it is appropriate in order to be implemented in any
digital processor device.

V. NONIDEAL SYSTEM MODEL

Now a set of nonidealities must be introduced in order to deal
with a more realistic model: an error in the estimation of the
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Fig. 11. Normalized power spectral density of simulated output S, ( f) with

different amplitude errors in the estimation of the downconversion gain.

downconversion gain and the impairments of quadrature modu-
lators and demodulator.

A. Error in the Downconversion Gain Estimation

As mentioned above, the downconversion gain, Gy, is sim-
ulated as an estimation of the inverse of total equivalent linear
gain of the amplifying branches. It is calculated as the mean
of the gain amplifying branches, G;. Now, we consider how an
error in the downconversion gain estimation influences on the
performance of this method. Fig. 10 shows the results of the
simulations carried out introducing amplitude and phase errors,
Cs, in the calculated downconversion gain, G, using the ex-
pression (28).

GL=G;-COs  Cs=Csp-ei%, (28)
It can be seen that amplitude errors in the downconversion gain
estimation below 1 dB do not influence the system performance.
The influence increases slowly when the amplitude errors are
above 1.5 dB, but even for higher values, the generated ACI is
negligible.

B. Modulator and Demodulator Misalignments

Perfectly balanced quadrature modulators and demodulator
were assumed in this architecture, which leads to another
practical consideration. The quadrature imbalances (amplitude
and phase) create a residue in the adjacent channel, increasing
the ACI [19], [26]. Fig. 12(a) shows the degradation of the
ACI when there are amplitude imbalances in the quadrature
modulators, without phase imbalance and Fig. 12(b) shows
the phase imbalances effect without amplitude imbalance.
There is a strong influence of the imbalances of the quadrature
modulator on the system performance, and it can become a
limitation in this architecture.

‘We have also analyzed the effect of an unbalanced quadrature
demodulator in this architecture. Fig. 13(a) and 13(b) show the
influence of the imbalances in the quadrature demodulator on
the proposed method and architecture.
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Fig. 12. Normalized power spectral density of simulated output S, ( f) (a) with amplitude imbalances (b) with phase imbalances in the quadrature modulator.

Fig. 14 shows the effect in the distortion in the adja-
cent channel of a more realistic model with the following
commercial values of imbalances in the quadrature modula-
tors/demodulator.

The reduction in the adjacent channel interference using the
proposed adaptive LINC transmitter with regard to a single am-
plifying branch is almost 18 dB. There are two possible solu-
tions if a greater increase is required. One of them involves the
use of perfect digital modulators/demodulator or their integra-
tion in an ASIC device in order to get lower misalignments in the
modulators and demodulator. The other one means performing
some techniques for correction of the analogue modulators and
the demodulator. This paper does not focus in the quadrature
modulator and demodulator correction networks. Several publi-
cations have addressed this matter [21]-[24].

Anyway, the requirements of DVB-T standard regarding the
spectrum level outside the channel bandwidth are broadly ful-
filled. It would be also possible to reduce the Output Power
Backoff using the proposed method and therefore higher power
efficiency would be obtained. Fig. 15 shows the PSD of the
output power amplifier signal, S,(f), for different values of
Output Power Back-off (OBO) applying the proposed adaptive
transmitter LINC method. According to Fig. 15, thanks to this
method it would be possible to work with a 2 dB OBO fulfilling
the requirements of DVB-T standard.

The comparison between Figs. 15 and 4, with a 5 dB OBO,
demonstrates that this method improves the out-of-band spu-
rious rejection around 18 dB. In this situation, the amplifier ef-
ficiency is 7, = 34%. The same performance can be obtained
with a single amplifier structure, operating at a 20 dB OBO,
which would imply very low power efficiency, that is, , = 3%.
Besides, the amplifier efficiency in the proposed adaptive trans-
mitter LINC method, for a 2 dB OBO, is , = 49%, and a
15 dB OBO is required to obtain the same performance with
a single amplifying branch, which supposes an amplifier effi-
ciency 1, = T%.

On the other hand, in the overall efficiency of this scheme
the power consumption of the adaptive signal processing has
to be included. The proposed technique consists of two signal-

processing blocks: the Signal Component Separator, typical
of a LINC transmitter, and the adaptive correction method.
The implementation of the SCS block has been treated in
previous publications [35], where the design of this block by
means of an application-specific signal processor (ASDSP)
to reduce the power consumption is suggested. The adaptive
correction method is an algorithm with simple multiplications
and additions instructions. Therefore, it can be implemented
using any current DSP with a very low number of instructions
(Iess than 20), which implies a low power consumption (for a
typical DSP consumption 1,4 mW/MIPS), with regard to the
consumption in the power stages. It supposes a reduction in
the overall efficiency from 49% to 48%. Anyway, this block
can be also implemented using an ASDSP in order to further
decrease the power consumption.

Therefore, an overall efficiency increase greater than 40%
is obtained when the proposed adaptive correction method is
applied.

Another ideal situation that has been assumed in the pre-
vious simulations corresponds to a null loop delay. The feedback
signal 7 (¢) is a delayed and attenuated version of the amplifier
output signal s, (¢). Including in (8) the loop delay, 7, the feed-
back signal can be written as

So<t—7').

ri) =

The delay must be compensated for the adaptive algorithm to
correctly compare the source signal, s (¢), with the feedback
signal, r (¢). As the digital processing block contains both sig-
nals, a delay compensation can be easily made by means of an
appropriate comparison between both signals, as shows (30)

(29)

e(t)y=s(t—1)—r(t). (30)

Therefore, the delay produced by the correction circuit has
to be estimated before introducing the adaptive algorithm. A
rough estimation can be carried out with the theoretical time
delay of the components in the design or by applying some of
the loop delay estimation techniques proposed by other authors
[18], [21], [25] or with some previous calibration.
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Fig. 14. Normalized power spectral density of simulated output signal .S, ( f)
with imbalances in quadrature modulators and demodulator in three situations:
(a) with a single amplifying branch (without LINC transmitter) (b) with LINC
transmitter but without imbalances correction method between amplifying
branches and (c) with LINC transmitter and applying the proposed correction
method.

We have analyzed the influence of errors in the estimation of
the loop delay. According to the results showed in Fig. 16, the
adaptive method runs correctly if the error in the delay estima-
tion is less than 1 us. So, accurate delay matching is important
to improve the performance of this method, but it is not a limi-
tation when implementing it in a real system.

VI. CONCLUSION

We have investigated the applicability for OFDM trans-
mission systems of an adaptive digital method of amplifier
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linearization, based on a LINC transmitter scheme, in order
to reduce the nonlinear distortion. The presented method cor-
rects the undesirable gain and phase imbalances, which appear
between amplifying branches in LINC transmitters. Using a
simulation we have demonstrated that it is possible to re-
duce the Adjacent Channel Interference around 18 dB in a
system with a multicarrier modulation, working at a 2 dB
OBO. The same performance can be obtained with a single
amplifier structure, operating at a 15 dB OBO, which im-
plies an efficiency increase greater than 40%. The proposed
model converges quickly toward very low interference levels
in adjacent channels. According to the simulation, the adaptive
coefficients quickly reach its optimal value. Effects of system
impairments, such as modulator and demodulator misalign-
ments and loop delay have been also included. As a result of
its adaptive technique, this method can track the input signal
variations and possible changes due to variations in operating
conditions.
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