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Abstract 

This study is in the context of sleep apnea recognition 

from multi-lead ECGs. In 38 patients, 8-channel ECGs 

were recorded simultaneously to a polysomography 

(PSG). The ECG was classified in segments of one minute 

for occurrence of sleep apnea events by quantification of 

the regularity of characteristic oscillations in either heart 

rate or ECG amplitude. Diagnostic accuracy is compared 

by ROC-analysis against the expert annotations of the 

PSG, and its reproducibility was tested on the Physionet 

apnea ECG database. Whereas amplitude variations yield 

consistent results on both data sets (ROC-area 89.0% vs. 

88.3%), a remarkable loss in performance is observed for 

heart rhythm (89.8% vs. 77.9%). Reasons for this 

difference are discussed and it is shown that factors like 

diabetes have a confounding influence on heart rate. With 

respect to aggregation of multi-lead information, simple 

averaging (89.3%) seems to be as appropriate as more 

complex PCA-based methods (87.2%). 

 

1. Introduction 

In the CinC Challenge 2000 on recognition of sleep 

apnea from the ECG, participants mainly focussed on two 

well-known ECG manifestations of apnea [1]: First, the 

cyclic variation of heart rate (CVHR) [2], a regular pat-

tern of alternating phases of bradycardia and tachycardia 

mediated via the autonomous nervous system (ANS). 

And second, the modulation of ECG amplitude by respi-

ratory activity [3]. However, the authors often combined 

both approaches into one classifier so that the individual 

merits were hard to judge. Moreover, only a single ECG 

channel sampled at 100 Hz was available, and little was 

known about how representative the sample is. 

In this context, this study addresses four questions: Is 

there a significant difference in apnea recognition 

accuracy from heart rate and ECG amplitude variations as 

sources of information or are they equivalent? How 

reproducible are the recognition rates on different data 

sets? What improvement is achievable when high 

resolution multi-lead ECG data is available, and how can 

amplitude variations from multiple leads best be 

aggregated into one single series? 

2. Methods 

The ECG signals used in this study are 38 8-channel 

(I, II, V1 to V6) holter recordings (Mortara H12+) 

registered with a sampling rate of 1 kHz during sleep in 

parallel to a full night polysomnography (Respironics 

Alice 4). After 50 Hz reduction, the baseline of the ECG 

was corrected to zero in the isoelectric interval prior to 

the QRS complex using a heart rate dependent highpass 

filter. QRS detection and classification was performed 

and carefully confirmed using self-developed software. 

The dataset used for comparison is the Physionet 

apnea ECG database (AECGDB) which is available on 

the internet and has also been used in [1, 4]. 

The series of RR-intervals between consecutive beats 

served as basis for CVHR detection. For robust 

quantification of variations in amplitude, we use the mean 

absolute value (MAV) of the baseline corrected ECG 

signal, calculated for each lead i (i=1 to 8) in a 120 ms 

window, centred at the sample index θn of the n
th

 QRS 

fiducial point: 
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This results in eight series {mi(n)}. Ectopic and 

strongly corrupted beats were excluded from MAV-

calculation; the corresponding values were later 

interpolated to keep time relations. 

Fig. 1 gives an example for the MAV-series in leads II, 

and V2 during a phase of recurring severe apneas. 

Moreover, the corresponding traces of respiratory 

movements and flow as well as the series of RR-intervals 

are shown. In the latter, a pronounced CVHR pattern is 

easily detectable. The start of the reflex tachycardia 

coincides with the resumption of air flow in consequence 

of an arousal. Upon cessation of air flow due to absence 

of respiratory movements, bradycardia restarts and 

persists during the obstructed breathing cycles. In the 
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traces of the MAV series, two superimposed phenomena 

are visible. First, a higher frequency (HF) oscillation of 

comparatively low amplitude that clearly is related to 

respiratory excursions, and second, a pronounced low 

frequency (LF) pattern with the periodicity of single 

apnea events, coincident with the CVHR. 

In both MAV-series, the magnitude of the respiratory 

movements is reflected in an amplitude modulation of the 

HF-oscillations which permits detection of the absence of 

activity during the initial central apnea and its presence in 

the ventilatory phase. Unfortunately, the optimal leads for 

detection seem to differ from patient to patient, and even 

within the same patient, dependent on body position. This 

similarly holds for the LF component. 

Our approach for a condensed extraction from multi-lead 

ECGs consists in the following procedure (fig. 2): First, 

the MAV-series {mi(n)} of each lead is lowpass-filtered 

using a 2
nd

 order Savitzky-Golay (SG) Filter of width 9 

ms. The resulting series {m_lpi(n)} is subtracted from the 

original one which yields the HF respiratory modulation. 

After rectification, these HF residuals are submitted to a 

second SG-filter of width 13 ms. The result of this 

demodulation step, {m_demi(n)}, is an estimate of the 

magnitude of respiratory excursions captured by the 

corresponding lead i. The lowest trace of fig. 1 shows an 

example for lead V2. 

To summarize the information from all leads, vectors 

containing the eight m_lp values of a single beat n are 

defined and submitted to a principal component analysis 

(PCA). For apnea detection, only the first projection 

coefficient (PCAlp) is used. The same is done for m_dem 

resulting in a series {PCAdem(n)} To minimize the effect 

of body position changes, which cause abrupt steps in the 

time course of coefficients [4], the estimation is 

performed using an adaptive algorithm (aPCA) as 

described in [5]. The subtraction of a recursively updated 

template (forgetting factor: 0.98) from each vector prior 

to PCA compensates for the time-varying mean caused by 

postural effects. Initial estimates for template and PC are 

obtained from the first 50 valid beats. 

For the 8-channel ECG data, we compare apnea 

detection performance on the MAV series of the 

individual leads as well as on the aPCAlp and aPCAdem 

series. For the Physionet AECGDB, detection is 

performed solely on the MAV series since the database 

contains only one single ECG channel. The results are 

validated against the minute-by-minute annotations of an 

expert. For the multi-lead ECGs, minute-by-minute 

annotations are generated from the polysomnogram. Each 

minute of the ECG recording is labelled as apnea-positive 

whenever an apnea (obstructive, central or mixed) or 

hypopnea event is in progress during that minute; 

otherwise the label is apnea-negative. 

As obvious from fig. 1, repetitive apnea episodes 

elicit fairly regular low frequent modulations in the RR- 

and MAV-series and extend frequently over periods of 

several minutes. To quantify this regularity, we applied a 

measure of local series similarity (lSimil) based on 

correlation analysis that we already used successfully in 

earlier studies [4]. Although a statement on presence or 

absence of apnea is made for each single minute, we use 

segments of 5 minutes duration for calculation of 

similarity that are shifted in increments of one minute 
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Figure 1. Time course of RR-series, respiratory flow, 

respiratory movements and series of MAV values of lead 

II and lead V2 during repetitive apneas. The lowest trace 

shows the result of the demodulation of MAV of lead V2. 

Vertical lines delimit ventilatory phases.  

mi(n)
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Figure 2. Filtering and demodulation of the MAV series of 

each lead i. The two resulting series are processed 

separately. 
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over the total ECG signal. Each 5 min segment is band-

pass filtered using a low-pass SG filter of width 9 

samples, and a high-pass SG filter of width 55 samples, 

emphasizing the CVHR-related frequency band. 

From the band-pass series, we extract the central 

segment of 1 min duration and shift it over the total 5 min 

segment, calculating the normalized correlation 

coefficient for each time shift. The lSimil measure is 

calculated as the sum of all correlation values exceeding 

the empirically adjusted threshold of 0.55. 

To assess the suitability of the MAV and RR-series 

for apnea detection, ROC analysis is performed on the 

lSimil measure calculated separately from those series. 

From the ROC-curve, its area (AUC) as well as 

sensitivity and specificity for the point on the curve 

geometrically closest to 100% sensitivity and specificity 

are determined. 

As an alternative method to condense the information 

from multiple leads, we averaged the time courses of 

lSimil over all eight channels and compared it to the 

results obtained from the adaptive PCA. 

3. Results 

Tables 1 and 2 summarize the results of the ROC-

analysis after application of the lSimil measure to the RR- 

and the MAV -series. For the clinical data set (table 1), 

MAV of individual leads as well as averages of lSimil 

over all leads are given. Moreover, the first PCA 

coefficient of the lowpass-filtered and demodulated MAV 

series is listed. 

From table 1, it is obvious that the results based on heart 

rhythm (RR-series, AUC 77.9) are worse compared to the 

MAV and PCA series. Moreover, the results of MAV 

differ considerably between the ECG channels, with best 

performance for leads I (AUC 89.0) and II (AUC 85.6) 

that slightly increases when the lSimil values are averaged 

over all channels prior to ROC-analysis (AUC 89.3). The 

aPCA_lp-coefficients perform slightly worse (AUC 87.6) 

than MAV from lead I. Similarly, averaging lSimil of the 

individually demodulated MAV-series (AUC 84.5) 

outperforms the first aPCAdem coefficient (AUC 84.5). In 

table 2, the results for the Physionet AECGDB are listed. 

Here, RR-series and MAV from the available ECG lead 

perform comparable with slight advantages for the heart 

rhythm. The comparison of the two data sets shows that 

the MAV values from channel I (AUC 89.0) and 

Physionet (AUC 88.3) yield comparable results. 

However, there is a remarkable difference in the 

performance of the RR-series (AUC 89.8 vs. 77.9) which 

is much better in the Physionet AECGDB. In search of 

reasons for this different behaviour, we analyzed the 

clinical data set in two sub¬groups: patients with (n=4) 

and without (n=24) diabetes, which is known to affect the 

ANS and HRV. The prevalence of apnea minutes was 

comparable in both subgroups (26.7% vs. 28.7%). Before, 

all patients taking beta blockers were excluded (n = 10), 

since in our sample 9 out of 10 beta blocker patients had a 

body mass index (BMI) ≥35 (7 out of 10 BMI ≥40), and 

generally showed a higher degree of ectopy in the ECG. 

Because of these dependencies, a conclusion would 

hardly have been possible. 
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Figure 3. ROC-curves and AUC for non-diabetes (dia -) 

patients (solid line, dashed line), and diabetes (dia +) 

patients (dot, dash-dot). In each subgroup, lSimil of the 

RR-series (dash and dash-dot lines) and lSimil of MAV, 

averaged over all ECG leads, (solid, dot) are calculated.  

Patients with beta blocker medication were excluded. 

Table1. ROC-results in % for the clinical dataset (lSimil 

calculated from different data sources). 

data source ECG lead Sens. Spec. AUC 

RR-series  67.6 76.2 77.9 

MAV I 80.7 83.1 89.0 

MAV II 77.8 79.5 85.6 

MAV V1 67.3 76.9 77.2 

MAV V2 74.3 77.9 81.7 

MAV V3 77.3 78.4 84.4 

MAV V4 72.4 80.0 82.4 

MAV V5 74.0 75.8 81.9 

MAV V6 74.9 77.2 82.7 

aPCAlp all 80.5 81.1 87.6 

MAV avrg(all) 83.6 81.5 89.3 

aPCAdem all 72.3 76.8 81.6 

dem(MAV) avrg(all) 77.4 77.3 84.5 

     

Table 2. ROC-results in % for the Physionet Apnea ECG 

database (lSimil calculated from different data sources) 

data source Sens. Spec. AUC 

RR-series 81.3 82.8 89.8 

MAV 79.8 84.9 88.3 
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Fig. 3 shows the ROC-curves for both subgroups. It is 

obvious that the curves derived from heart rate depend 

strongly on the presence or absence of diabetes whereas 

the MAV-series show much more consistent results. 

4. Discussion and conclusions 

A restricted view, limited to the results on the 

AECGDB (table 2), suggests the equivalence of heart 

rhythm and QRS amplitude modulation as sources of 

information with respect to recognition of sleep apnea 

from the ECG. Both perform comparably well with an 

AUC around 89%. Although the the MAV results on the 

clinical data set (table 1) are in amazingly good 

agreement with those of the PADB, this interpretation 

clearly has to be rejected when comparing the perfor-

mance of the RR-series on both data sets. The decrease of 

almost 12% in AUC is remarkable (compare first rows in 

tables 1 and 2), and suggests the existence of non-apnea 

factors that affect heart rhythm but not morphology and 

occur with different prevalence in the data sets.  

As possible factors, we assumed diseases (i.e. diabetes) 

and medication (i.e. beta blockers) that are known to 

affect the ANS and therefore are likely to influence HRV 

variables but less the ECG amplitude modulation due to 

respiratory movements. The subgroup analysis clearly 

supports this hypothesis (fig. 3): Whereas in the non-

diabetes group, recognition accuracy of lSimil from the 

RR-series (dashed line) is increased (AUC 84% vs. 78% 

in table 1), the ROC-curve indicates a breakdown in 

performance for the diabetes patients (dash-dot, AUC 

69.3). So, the neurological side effects of diabetes seem 

to blur the CVHR pattern, rendering apnea detection from 

heart rate in this group of patients rather unreliable. It 

should however be kept in mind, that these results were 

derived from a rather small sample of patients (n=4).  

Contrarily, the ROC-results for the MAV -series are 

consistent for non-diabetes (AUC 91.0) and diabetes 

patients (AUC 89.3) and for both subgroups superior to 

those of the heart rhythm.  

We often found cases, where within the same patient, 

in some apnea phases a prominent CVHR-pattern was 

observable whereas in other phases the heart-rhythm 

appeared very unspecific although the apnea was clearly 

detectable in the MAV -modulations. Most likely, sleep 

stages are important in this context. Moreover, we 

observed that periodic leg movements during sleep can 

elicit a very regular heart rhythm modulation that does 

not appear in the MAV-series. All these findings indicate 

a superior robustness of ECG amplitude variations over 

heart rhythm for sleep apnea detection and lower 

susceptibility to confounding influences, which is 

especially supported by the remarkably consistent results 

on both – very different - data sets.  

Table 1 shows that the results of the MAVs are quite 

sensitive to the lead selected for analysis. The AUC 

values range from 77.2 % in lead V1 to 89.0% in lead I. 

Presumably, the optimal lead for detection varies even 

within the same patient due to body position changes 

during sleep. This was the main reason for choosing an 

adaptive algorithm to estimate the PCA coefficients. 

Nevertheless, it must be stated that our results do not 

indicate any advantage of the PCA over simple averaging 

of the local similarities calculated for each lead 

individually. This holds for both, the lowpass-filtered and 

the demodulated series, although for the former, aver-

aging all channels only gives slight improvement (AUC 

89.3%) over the best individual lead (I, AUC 89.0%). It 

should be noted that by quantifying lSimil, only phases of 

repetitive apneas (see fig. 1) are detectable which, 

however, in practice are usually found. 

From our results, we conclude that apnea detection 

relying solely on heart rhythm information should be 

regarded cautiously and is better complemented by analy-

sis of variability of ECG amplitude and morphology. 

In general, the lf-modulation in the MAV-series (AUC 

89.3) appears to be more specific for apnea and more 

robust for its detection than the demodulated MAVs 

(AUC 84.5). To condense information from multi-lead 

signals, simple averaging seems to be as appropriate as 

more complex PCA-based methods. 
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